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ABSTRACT

The observability and estimability of collaborative oppor-
tunistic navigation (COpNav) environments are studied.
A COpNav environment can be thought of as a radio fre-
quency signal landscape within which one or more radio
frequency receiver locate themselves in space and time by
extracting and possibly sharing information from ambi-
ent signals of opportunity (SOPs). Available SOPs may
have a fully-known, partially-known, or unknown charac-
terization. In the present work, the receivers are assumed
to draw only pseudorange-type measurements from the
SOPs. Separate observations are fused to produce an esti-
mate of each receiver’s position, velocity, and time (PVT).
Since not all SOP states in the COpNav environment may
be known a priori, the receivers must estimate the un-
known SOP states of interest simultaneously with their
own PVT. This paper establishes the minimal conditions

under which a COpNav environment consisting of multi-
ple receivers and multiple SOPs is completely observable.
In scenarios where the COpNav environment is not com-
pletely observable, the observable states, if any, are spec-
ified. Moreover, for the completely observable scenarios,
the degree of observability, commonly referred to as es-
timability, of the various states is studied, with particular
attention paid to the states with exceptionally good and
poor observability.

I. INTRODUCTION

Opportunistic navigation (OpNav) aims to extract po-
sitioning and timing information from ambient radio-
frequency “signals of opportunity” (SOPs). OpNav radio
receivers continuously search for opportune signals from
which to draw navigation and timing information, employ-
ing on-the-fly signal characterization as necessary. Signals
from discovered SOPs are downmixed and sampled coher-
ently, yielding a tight coupling between signal streams that
permits carrier-phase-level fusion of observables from the
various streams within a single or distributed state esti-
mator [1, 2].

The Global Positioning System (GPS) control segment
routinely solves an instance of the OpNav problem: the
location and timing offsets of a dozen or more GPS ground
stations are simultaneously estimated together with the or-
bital and clock parameters of the GPS satellites [3]. Com-
pared to the general OpNav problem, the GPS control seg-
ment’s problem enjoys the constraints imposed by accurate
prior estimates of site locations and satellite orbits. More-
over, estimation of clock states is aided by the presence
of highly-stable atomic clocks in the satellites and at each
ground station. In contrast, an OpNav receiver entering
a new signal landscape may have less prior information to
exploit and typically cannot assume atomic frequency ref-
erences, either for itself or for the SOPs. The GPS control
segment example also highlights the essentially collabo-
rative nature of OpNav. Like the GPS ground stations,
multiple OpNav receivers can share information to con-
struct and continuously-refine a global signal landscape.
The multi-receiver generalization of OpNav is termed co-
operative opportunistic navigation (COpNav). The large
size of the COpNav estimation problem, naturally raises
the question of state observability.
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In its most general form, OpNav treats all ambient radio
signals as potential SOPs, from conventional global navi-
gation satellite system (GNSS) signals to communications
signals never intended for use as a timing or positioning
source. Each signal’s relative timing and frequency offsets,
transmit location, and frequency stability, are estimated
on-the-fly as necessary, with prior information about these
quantities exploited when available. At this level of gen-
erality, the OpNav estimation problem is similar to the
so-called simultaneous localization and mapping (SLAM)
problem in robotics [4]. Both imagine an actor which,
starting with incomplete knowledge of its location and sur-
roundings, simultaneously builds a map of its environment
and locates itself within that map.

In traditional SLAM, the map that gets constructed as the
actor (typically a robot) moves through the environment is
composed of landmarks—walls, corners, posts, etc.—with
associated positions. OpNav extends this concept to radio
signals, with SOPs playing the role of landmarks. In con-
trast to a SLAM environmental map, the OpNav “signal
landscape” is dynamic and more complex. For the simple
case of pseudorange-only OpNav, where observables con-
sist solely of signal time-of-arrival measurements, one must
estimate, besides the three-dimensional position xs and ve-
locity ẋs of each SOP transmitter’s antenna, each SOP’s
time offset δts from a reference time base, rate of change of
time offset δ̇ts, and a small set of parameters that charac-
terize the SOP’s reference oscillator stability. Even more
SOP parameters are required for an OpNav framework in
which both pseudorange and carrier phase measurements
are ingested into the estimator [1]. Of course, in addition
to the SOP parameters, the OpNav receiver’s own three-
dimensional position xr and velocity ẋr, time offset δtr,
and time offset rate δ̇tr must be estimated.

A study of COpNav observability benefits from the
COpNav-SLAM analogy. Although the question of ob-
servability was not addressed for more than a decade after
SLAM was introduced, the recent SLAM literature has
come around to considering fundamental properties of the
SLAM problem, including observability [5–9]. The effects
of partial observability in planar SLAM with range and
bearing measurements were first analyzed via linearization
by Andrade-Cetto and Sanfeliu [5]. This paper came to the
counterintuitive conclusion that the two-dimensional pla-
nar wold-centric (absolute reference frame) SLAM problem
is fully-observable when the location of a single landmark
is known a priori. With a fully nonlinear observability
analysis, Lee et al. subsequently disproved this result and
showed that at least two anchor landmarks with known po-
sitions are required for local weak observability [7]. Later
analysis of the SLAM problem’s Fisher information matrix
confirmed the result of the nonlinear analysis [8]. How-
ever, an apparent discrepancy between linear and nonlin-
ear SLAM observability analyses re-emerged in the work of

Perera and Nettleton [9], where it was shown that a linear
analysis based on piecewise constant system (PWCS) the-
ory [10] again predicted global planar-SLAM observability
in the case of a single known anchor landmark, whereas
a nonlinear analysis in the same paper indicated that two
known anchor landmarks were required for local observ-
ability. The linear PWCS result appears flawed given that
an observability test based on linearization should never
predict observability in a case where a fully nonlinear test
indicates lack of local weak observability.

An initial OpNav observability analysis was conducted in
[11]. It considered several scenarios which could be en-
countered in a typical OpNav environment comprising a
single receiver and multiple stationary SOPs. The OpNav
observability analysis in [11] utilized nonlinear local weak
observability tests, linear time-varying (LTV) observabil-
ity tests, and PWCS observability tests. While the con-
clusions achieved by the former two methods agreed, the
PWCS observability tests yielded contradictory results,
similar to the ones encountered in the SLAM observabil-
ity analysis. As clarified in [11], a close examination of
PWCS observability theory reveals that it is inapplicable
to systems whose measurement model is nonlinear.

The present paper’s contribution is to extend the work of
[11] in two ways. First, it considers the case of a COp-
Nav environment, which comprises multiple receivers in
an environment with multiple SOPs. The receivers are as-
sumed to share information about the environment. Sub-
sequently, the minimum set of information necessary to
make the COpNav environment completely observable is
established. The second contribution is to analyze the es-
timability of the COpNav environment. Whereas the no-
tion of observability is a binary property, i.e. it specifies
whether the system is observable or not; for estimation
purposes, the question of stochastic observability, also re-
ferred to as estimability, is of considerable importance. Es-
timability assesses the “degree of observability” of the var-
ious states. Not only is estimability vital for assessing the
performance of the estimators in a COpNav environment,
but it also could aid in prescribing maneuvers necessary
to maintain accurate estimates of the receiver and signal
landscape map. The observability and estimability results
offered are verified through simulations.

The remainder of this paper is organized as follows. Sec-
tion II reviews the various notions and tools necessary to
analyze the observability and estimability of COpNav envi-
ronments. Section III describes the COpNav environment
dynamics and observation model considered in this paper.
Section IV analyzes various COpNav scenarios and estab-
lishes whether each scenario is observable. This leads to
a set of minimum conditions necessary for complete COp-
Nav observability. Section V analyzes the estimability of
the COpNav states through simulating various COpNav
scenarios. Concluding remarks are given in Section VI.
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II. THEORETICAL BACKGROUND

Conceptually, observability of a dynamic system boils
down to the question of solvability of the state from a set
of observations that are linearly or nonlinearly related to
the state, and where the state evolves according to a set
of linear or nonlinear difference or differential equations.
In particular, observability is concerned with determining
whether the state of the system can be consistently esti-
mated from a set of observations taken over a finite period
of time.

For nonlinear systems, it is more appropriate to ana-
lyze the observability through nonlinear observability tools
rather than linearizing the nonlinear system and applying
linear observability tools. This is due to two reasons: (i)
nonlinear observability tools capture the nonlinearities of
the dynamics and observations, and (ii) while the con-
trol inputs are never considered in the linear observability
analysis, they are taken into account in the nonlinear ob-
servability analysis.

A. Observability of Nonlinear Systems

For the sake of clarity, various notions of nonlinear observ-
ability are defined in this subsection [12].

Definition 1. Consider the continuous-time (CT) non-
linear dynamic system

ΣNL :

{
ẋ(t) = f [x(t),u(t)] , x(t0) = x0

y(t) = h [x(t)] ,
(1)

with solution x(t) = g (t,x0,u), where x ∈ Rn is the
system state vector, u ∈ Rr is the control input vector,
y ∈ Rm is the observation vector, and x0 is an arbitrary
initial condition. Two states x1 and x2 are said to be
indistinguishable if h[g (t,x1,u)] = h[g (t,x2,u)], for all
t ≥ 0 and all u. The set of all points indistinguishable
from a particular state x is denoted as I(x).

Definition 2. Let N be a subset (neighborhood) in the
state-space Rn and x1,x2 ∈ N. Two states x1 and x2 are
said to be N-indistinguishable if every control u, whose tra-
jectories from x1 and x2 both lie in N, fails to distinguish
between x1 and x2. The set of all N-indistinguishable
states from a particular state x is denoted as IN(x).

Definition 3. The system ΣNL is said to be observable
at x0 if I(x0) = {x0}. The system ΣNL is said to be
observable if I(x0) = {x0}, for all x0 ∈ Rn.

Note that observability is a global concept. It might be
necessary to travel a considerable distance or for a long
period of time to distinguish between initial conditions in
Rn. Moreover, observability of ΣNL does not imply that
every input u distinguishes initial conditions in Rn.

Definition 4. The system ΣNL is said to be locally observ-
able at x0 if IN(x0) = {x0} for every open neighborhood
N of x0.

Note that local observability is stronger than observability.
Local observability requires distinguishability of the initial
conditions without going too far. In particular, trajectories
need to lie in any open subset of Rn.

Definition 5. The system ΣNL is said to be weakly ob-
servable at x0 if there exists a neighborhood N such that
I(x0)

∩
N = {x0}.

Note that weak observability is weaker than observability.
Weak observability requires the existence of an open sub-
set in Rn within which the only initial condition that is
indistinguishable from x0 is x0 itself. Note that in weakly
observable systems, trajectories may need to travel far
enough for distinguishability of the initial conditions.

Definition 6. The system ΣNL is said to be locally weakly
observable at x0 if there exists an open neighborhood N of
x0 such that for every open neighborhood M of x0 with
M ⊂ N, IM(x0) = {x0}.

Intuitively, ΣNL is locally weakly observable if x can be
instantaneously distinguished from its neighbors. The var-
ious notions of observability are related to each other ac-
cording to the following relationships

locally observable ⇒ observable

⇓ ⇓

locally weakly observable ⇒ weakly observable.

For nonlinear systems, establishing global system proper-
ties, such as observability, is typically difficult to achieve.
Hence, local properties are typically sought. A somewhat
simple algebraic test exists for establishing local weak ob-
servability of a specific form of the nonlinear system ΣNL

in (1), known as the control affine form [13], given by

ΣNL,a :

{
ẋ(t) = f0 [x(t)] +

∑r
i=1 f i [x(t)]ui, x(t0) = x0

y(t) = h [x(t)] .
(2)

This test is based on the concept of Lie derivatives, which
are defined next.

Definition 7. The first-order Lie derivative of a scalar
function h with respect to a vector-valued function f is
defined as

L1
fh(x) ,

n∑
j=1

∂h(x)

∂xj
fj(x) (3)

= ⟨∇xh(x),f(x)⟩ , (4)
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where f(x) , [f1(x), . . . , fn(x)]
T
. The zeroth-order

Lie derivative of any function is the function itself, i.e.
L0
fh(x) = h(x). The second-order Lie derivative can be

computed recursively as

L2
fh(x) = Lf

[
L1
fh(x)

]
(5)

=
⟨[
∇xL

1
fh(x)

]
,f(x)

⟩
. (6)

Higher-order Lie derivatives can be computed similarly.
Mixed-order Lie derivatives of h(x) with respect to differ-
ent functions f i and f j, given the derivative with respect
to f i, can be defined as

L2
f ifj

h(x) , L1
fj

[
L1
f i
h(x)

]
(7)

=
⟨[

L1
f i
h(x)

]
,f j(x)

⟩
. (8)

Definition 8. Given the nonlinear system in control affine
form ΣNL,a, the so-called nonlinear observability matrix is
defined as the matrix whose rows are the gradients of Lie
derivatives, specifically

ONL ,
{
∇xL

l
f i,...,fj

hp(x) | i, j = 0, . . . , l; l = 0, . . . , n− 1,

p = 1, . . . ,m
}

(9)

Note that for the case of vector observations h, we need
to calculate n − 1 derivatives for each scalar component
hp. Note also that it is enough to consider the first n− 1
Lie derivatives of the h for the rank test and we can stop
taking further derivatives of h at the first instance of linear
dependence among their gradients [13].

The significance of the nonlinear observability matrix is
that it can be employed to furnish necessary and sufficient
conditions for local weak observability [12]. In particular,
if ONL is full-rank, then the system ΣNL,a is said to satisfy
the observability rank condition.

Theorem 1. If the nonlinear system in control affine form
ΣNL,a satisfies the observability rank condition, then the
system is locally weakly observable.

Theorem 2. If a system ΣNL,a is locally weakly ob-
servable, then the observability rank condition is satisfied
generically.

The term “generically” means that the observability ma-
trix is full-rank everywhere, except possibly within a sub-
set of the domain of x [14]. Therefore, if the ONL is not of
sufficient rank for all values of x, the system is not locally
weakly observable [15].

B. Observability of Linear Systems

Observability of discrete-time (DT) LTV systems is defined
as follows [16].

Definition 9. Consider the DT LTV dynamic system

ΣL :

{
x(tk+1) = F(tk)x(tk) +B(tk)u(tk), x(tk0) = x0

y(tk) = H(tk)x(tk), tk ∈ [tk0 , tkf
],

(10)
where F ∈ Rn×n, B ∈ Rn×r, and H ∈ Rm×n. The
LTV system ΣL is said to be observable in a time interval
[tk0 , tkf

], if the initial state x0 is uniquely determined by
the zero-input response y(tk) for tk ∈ [tk0

, tkf−1]. If this
property holds regardless of the initial time tk0 or the initial
state x0, the system is said to be completely observable.

For linear systems, if any input distinguishes the initial
conditions x0, then every input does. Hence, it suffices to
consider the case u ≡ 0, and this is why control inputs
are never considered when assessing observability of linear
systems.

Observability of LTV systems ΣL is typically established
through studying the rank of either the so-called observ-
ability Grammian or the observability matrix. The follow-
ing theorem states a necessary and sufficient condition for
observability of LTV systems through the l-step observ-
ability matrix [16].

Theorem 3. The LTV system ΣL is l-step observable if
and only if the l-step observability matrix, defined as

OL(tk, tk+l) ,


H(tk)

H(tk+1)Φ(tk+1, tk)
...

H(tk+l−1)Φ(tk+l−1, tk)

 (11)

is full-rank, i.e. rank [OL(tk, tk+l)] = n. The matrix Φ is
the DT transition matrix, defined as

Φ(tk, tj) ,
{

F(tk−1)F(tk−2) · · ·F(tj), tk ≥ tj+1;
I, tk = tj.

Linear observability tools may be applied to nonlinear sys-
tems by expressing the nonlinear system in its linearized
error form (also known as the indirect form), where the
state vector ∆x in this formulation contains the error
states, which are defined as the difference between the true
states and the nominal states, and the observation vector
∆y is defined as the difference between the true observa-
tions and the nominal observations. The linearized error
form of the discretized version of the nonlinear system ΣNL

defined in (1) is given by

∆x (tk+1) = F(tk)∆x (tk)

∆y(tk) = H(tk)∆x (tk) ,
(12)

where F andH are the dynamics and observation Jacobian
matrices, respectively, evaluated at the nominal states.
The observability results achieved in this case are local.
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C. Degree of Observability: Estimability

Whereas the notion of observability is a binary property,
i.e. it specifies whether the system is observable or not;
for estimation purposes, the question of estimability, is of
considerable importance. Estimability assesses the “degree
of observability” of the various states. Estimability can be
assessed by the condition number of the FIM, thus measur-
ing whether an observable system is poorly estimable due
to the gradient vectors comprising the FIM being nearly
collinear [17].

An alternative method for assessing estimability of the dif-
ferent states was proposed in [18]. This method is based on
analyzing the eigenvalues and eigenvectors of a normalized
estimation error covariance matrix of the Kalman Filter
(KF). The normalization of the estimation error covari-
ance serves two purposes. First, it forces the transformed
estimation error vector to be dimensionless. This dimen-
sional homogeneity makes comparison among the eigenval-
ues meaningful. Such transformation can be accomplished
through the congruent transformation

P
′
(tk|tk) =

[√
P(t0|t−1)

]−1

P(tk|tk)
[√

P(t0|t−1)
]−1

,

where P(t0|t−1) is the initial estimation error covariance
and P(tk|tk) is the posterior estimation error covariance.
Second, it sets a bound for the eigenvalues such that they
are bounded between zero and n. This can be accom-
plished through

P
′′
(tk|tk) =

n

tr [P′(tk|tk)]
P

′
(tk|tk), (13)

where tr(•) is the trace of the matrix.

The largest eigenvalue ofP
′′
(tk|tk) corresponds to the vari-

ance of the state or linear combination of states that is
poorly observable. On the other hand, the state or linear
combination of states that is most observable is indicated
by the smallest eigenvalue. The appropriate linear combi-
nation of states yielding the calculated degree of observ-
ability is given by the respective eigenvectors. Of course,
there are cases where the eigenvalues distribution is unin-
teresting and nothing startling is revealed by this method.
However, wide dispersion of the eigenvalues indicate cases
of exceptionally good or poor observability of certain linear
combinations of the states [18].

III. MODEL DESCRIPTION

A. Dynamics Model

The receiver’s dynamics will be assumed to evolve ac-
cording to the continuous white noise acceleration model,
which is also known as the velocity random walk model.

An object moving according to such dynamics in a generic
coordinate ξ, has the dynamics

ξ̈(t) = w̃ξ(t),

where w̃ξ(t) is a zero-mean white noise process with power
spectral density q̃ξ, i.e.

E [w̃ξ(t)] = 0, E [w̃ξ(t)w̃ξ(τ)] = q̃ξ δ(t− τ),

where δ(t) is the Dirac delta function. The receiver and
SOP clock error dynamics will be modeled according to the
so-called two-state model, composed of the clock bias δt
and clock drift δ̇t. The clock error states evolve according
to

ẋclk(t) = Aclk xclk(t) + w̃clk(t),

where

xclk =

[
δt

δ̇t

]
, w̃clk =

[
w̃δt

w̃δ̇t

]
, Aclk =

[
0 1
0 0

]
,

where w̃δt and w̃δ̇t are zero-mean, mutually independent
white noise processes with power spectra Sδt and Sδ̇t, re-
spectively. The power spectra Sδt and Sδ̇t can be related

to the power-law coefficients, {hα}2α=−2, which typically
characterize the power spectral density of the fractional
frequency deviation y(t) of an oscillator from nominal fre-
quency. It is common to approximate such relationships
by considering only the frequency random walk coefficient
h−2 and the white frequency coefficient h0, which lead to
Sδt ≈ h0

2 and Sδ̇t ≈ 2π2h−2 [17].

The receiver’s state vector will be defined by augmenting
the receiver’s planar position and velocity states with its
clock error states to yield the state-space realization

ẋr(t) = Ar xr(t) +Dr w̃r(t), (14)

where xr =
[
rTr , ṙ

T
r , δtr, δ̇tr

]T
, rr = [xr, yr]

T
, w̃r =[

w̃x, w̃y, w̃δtr , w̃δ̇tr

]T
,

Ar =

 02×2 I2×2 02×2

02×2 02×2 02×2

02×2 02×2 Aclk

 , Dr =

[
02×4

I4×4

]
,

The receiver’s dynamics in (14) is discretized at a sampling
period T , tk+1 − tk to yield the DT-equivalent model

xr (tk+1) = Fr xr(tk) +wr(tk), k = 0, 1, 2, . . . (15)

where wr is a DT zero-mean white noise sequence with
covariance Qr, with

Fr =

 I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk

 , Fclk =

[
1 T
0 1

]
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Qr = diag [Qpv, Qclk,r] , Qclk,r=

[
SδtrT + Sδ̇tr

T 3

3 Sδ̇tr
T 2

2

Sδ̇tr
T 2

2 Sδ̇tr
T

]

Qpv =


q̃x

T 3

3 0 q̃x
T 2

2 0

0 q̃y
T 3

3 0 q̃y
T 2

2

q̃x
T 2

2 0 q̃xT 0

0 q̃y
T 2

2 0 q̃yT

 .

For simplicity, the SOP will be assumed to emanate from
a spatially-stationary terrestrial transmitter and its state
will consist of its planar position and clock error states.
Hence, the SOP’s dynamics can be described by the LTI
state-space model

ẋs(t) = As xs(t) +Dsw̃s(t), (16)

where xs =
[
rTs , δts, δ̇ts

]T
, rs = [xs, ys]

T
, ws =[

w̃δts , w̃δ̇ts

]T
As =

[
02×2 02×2

02×2 Aclk

]
, Ds =

[
02×2

I2×2

]
,

Discretizing the SOP’s dynamics (16) at a sampling inter-
val T yields the DT-equivalent model

xs (tk+1) = Fs xs(tk) +ws(tk), (17)

where ws is a DT zero-mean white noise sequence with
covariance Qs, and

Fs = diag [I2×2, Fclk] , Qs = diag [02×2, Qclk,s] ,

where Qclk,s is identical to Qclk,r, except that the spectra
Sδtr and S ˙δtr

are now replaced with SOP-specific spectra,
Sδts and S ˙δts

.

Defining the augmented state as x ,
[
xT
r , x

T
s

]T
and the

augmented process noise vector as w ,
[
wT

r , w
T
s

]T
yields

the system dynamics

x (tk+1) = Fx (tk) +w(tk), (18)

where F = diag [Fr, Fs], and w is a zero-mean white noise
sequence with covariance Q = diag [Qr,Qs]. While the
model defined in (18) considered only one receiver and
one SOP, the model can be readily extended to multi-
ple receivers and SOPs by augmenting their corresponding
states and dynamics.

B. Observation Model

To properly model the pseudorange observations, one must
consider three different time systems. The first is true
time, denoted by the variable t, which can be considered
equivalent to GPS system time. The second time system

is that of the receiver’s clock and is denoted tr. The third
time system is that of the SOP’s clock and is denoted ts.
The three time systems are related to each other according
to

t = tr − δtr(t) (19)

t = ts − δts(t), (20)

where δtr(t) and δts(t) represent the amount by which
the receiver and SOP clocks are different from true time,
respectively.

The pseudorange observation made by the receiver on a
particular SOP is made in the receiver time and is modeled
according to

ρ(tr) =

∥rr [tr − δtr(tr)]− rs [tr − δtr(tr)− δtTOF]∥2 +
c . {δtr(tr)− δts [tr − δtr(tr)− δtTOF]}+ ṽρ(tr),(21)

where c is the speed of light, δtTOF is the time-of-flight
of the signal from the SOP to the receiver, and ṽρ is the
error in the pseudorange measurement due to modeling
and measurement errors. The error ṽρ is modeled as a zero-
mean white Gaussian noise process with power spectral
density r̃ [19]. In (21), the clock offsets δtr and δts were
assumed to be small and slowly changing, in which case
δtr(t) = δtr [tr − δtr(t)] ≈ δtr(tr). The first term in (21)
is the true range between the receiver’s position at time of
reception and the SOP’s position at time-of-transmission
of the signal, while the second term arises due to the offsets
from true time in the receiver and SOP clocks.

The observation model in the form of (21) is inappropriate
for our observability analysis as it suffers from two short-
comings: (i) it is in a time system that is different from
the one considered in deriving the system dynamics, and
(ii) the observation model is a nonlinear function of the
delayed system states. The first shortcoming can be dealt
with by converting the observation model to true time.
The second problem is commonly referred to as the out-
put delay problem, in which the observations (outputs) are
a delayed version, deterministic or otherwise, of the sys-
tem state. A common approach to deal with this problem
entails discretizaion and state augmentation [20]. For sim-
plicity, and in order not to introduce additional states in
our model, proper approximations will be invoked to deal
with the second shortcoming.

To this end, the pseudorange observation model in (21) is
converted to true time by invoking the relationship (19) to
get an observation model for ρ[t+δtr(t)]. The resulting ob-
servation model is delayed by δtr(t) to get an observation
model for ρ(t). Assuming the receiver’s position to be ap-
proximately stationary within a time interval of δtr(t), i.e.
rr [t− δtr(t)] ≈ rr(t), and using the fact that the SOP’s
position is stationary, i.e. rs [t− δtr(t)− δtTOF] = rs(t),

6



yields

ρ(t)≈∥rr(t)− rs(t)∥2 +
c . {δtr(t)− δts [t− δtr(t)− δtTOF]}+ ṽρ(t).(22)

Next, it is argued that δts [t− δtr(t)− δtTOF] ≈ δts (t).
The validity of this argument depends on the size of δtr
and of δtTOF and on the rate of change of δts. For ground-
based SOP transmitters up to 1 km away, the time-of-flight
δtTOF is less than 3.34µs. Likewise, the offset δtr can be
assumed to be on the order of microseconds. It is reason-
able to assume the SOP clock bias δts to have an approx-
imately constant value over microsecond time intervals.
Therefore, the pseudorange observation model can be fur-
ther simplified and expressed as a nonlinear function of the
state as

z(t)= ρ(t) , h [x(t)] + ṽρ(t)

≈ ∥rr(t)− rs(t)∥2 + c · [δtr(t)− δts(t)] + ṽρ(t).(23)

Discretizing the observation equation (23) at a sampling
interval T yields the DT-equivalent observation model

z(tk)= y(tk) + vρ(tk) (24)

= ∥rr(tk)− rs(tk)∥2 + c · [δtr(tk)− δts(tk)] + vρ(tk),

where vρ is a DT zero-mean, white Gaussian process with
covariance r = r̃/T .

IV. OBSERVABILITY ANALYSIS OF COPNAV
ENVIRONMENTS

A. Observability Analysis Objective

This section establishes the various conditions under which
a COpNav environment is observable. The objective of this
analysis is twofold: (i) determine whether the environment
is observable, and (ii) if the environment is not completely
observable, determine the observable states, if any. To
this end, the nonlinear observability matrix defined in (9)
and the l-step observability matrix defined in (3) will be
utilized.

B. Receiver Trajectory Singularity

In the upcoming analysis, it is assumed that the receiver
is not stationary and that its trajectory is not collinear
with the vectors connecting the receiver and any of the
SOPs. It is assumed that @ α ∈ R such that ẋr(tk+1) =
α [xr(tk)− xs(tk)] and ẏr(tk+1) = α [yr(tk)− ys(tk)]. This
ensures that the bearing angle between the receiver and the
SOPs is never constant along the receiver trajectory. This
assumption ensures that the observability matrix will not
lose rank due to the receiver’s motion path.

To illustrate why this case must be excluded, consider a
simplified scenario in which the receiver and SOP clocks
are ideal such that the observations are given by y(tk) =
∥rr(tk) − rs(tk)∥2. In this case, the state vector is given

by x =
[
rTr , ṙ

T
r , r

T
s

]T
and the corresponding observability

matrix is given by

O(t0, tl)=


hT
a,r,s(t0) 02×1 −hT

a,r,s(t0)
hT
a,r,s(t1) ThT

a,r,s(t1) −hT
a,r,s(t1)

...
...

...
hT
a,r,s(tl−1) T (l − 1)hT

a,r,s(tl−1) −hT
a,r,s(tl−1)

 ,

where hT
a,r,s(tk) ,

[
xr(tk)−xs(tk)

∥rr(tk)−rs(tk)∥2
, yr(tk)−ys(tk)

∥rr(tk)−rs(tk)∥2

]
. An

alternative expression for hT
a,r,s(tk) is given by hT

a,r,s(tk) =
[ cos θr,s(tk), sin θr,s(tk) ], where θr,s(tk) is the angle be-
tween the x-axis and the range vector connecting the re-
ceiver and the SOP at time instant tk. In this represen-
tation, it becomes obvious that OL(t0, tl) has a rank of 3
except when the receiver’s motion path is collinear with
the SOP, in which case it has a rank of 2, since in this case
θr,s(t0) = θr,s(t1) = . . . = θr,s(tl−1).

C. Scenarios Overview

The various scenarios considered in the observability anal-
ysis are outlined Table I. The first scenario corresponds to
a single receiver and a single SOP whose initial states are
unknown (no a priori knowledge about any of the states is
available). Subsequent scenarios consider cases of partial
or full knowledge of initial states. In Table I, fully-known
means that all the initial states are known. Thus, a fully-
known receiver is one with known xr(t0), whereas a fully-
known SOP is one with known xs(t0). On the other hand,
partially-known means that only the initial position states
are known. Thus, a partially-known receiver is one with
known rr(t0), whereas a partially-known SOP is one with
known rs(t0).

TABLE I

COpNav observability analysis scenarios considered

Case Receiver(s) SOP(s)

1 1 Unknown 1 Unknown
2 1 Unknown m Partially-known
3 1 Unknown 1 Fully-known
4 1 Unknown 1 Fully-known &

1 Partially-known
5 n Partially-known 1 Unknown
6 n Partially-known m Partially-known
7 1 Partially-known 1 Fully-known
8 1 Fully-known 1 Unknown

7



D. Observability Analysis Results

The nonlinear and linear observability tests discussed in
Section II were applied to the scenarios outlined in Table
I. The conclusions achieved through both tests coincided
and are summarized in Table II. It is worth noting that the
observability results constitute the minimal set of observ-
ability requirements in the sense that knowing the results
for these scenarios, one can predict the observability of
an arbitrary scenario with n receivers and m SOPs and
any type of prior knowledge (none, partial, or full) for the
receivers and SOPs.

TABLE II

COpNav observability analysis results

Case Observable? Observable States

1 no none
2 no m = 1: none

m ≥ 2: xr, yr, ẋr, ẏr

3 no δtr, δ̇tr
4 yes all
5 no ẋri , ẏri , xs, ys, i = 1, . . . , n
6 no ẋri , ẏri , i = 1, . . . , n
7 yes all
8 yes all

V. ESTIMABILITY ANALYSIS OF COPNAV
ENVIRONMENTS

This section presents the estimability analysis results that
were achieved by simulating the three observable cases in
Table I: cases 4, 7, and 8. For purposes of numerical sta-
bility, the clock error states were defined to be cδt and
cδ̇t. All simulations assumed the receiver’s process noise
spectral density to be q̃x = q̃y = 0.001m2/s4, while the
sampling period was set to T = 1 ms. The receiver’s clock
was assumed to be a temperature-compensated crystal os-
cillator (TCXO) with h0 = 2×10−19 and h−2 = 2×10−20,
while the SOPs’ clocks were assumed to be oven-controlled
crystal oscillators (OCXOs) with h0 = 8 × 10−20 and
h−2 = 4× 10−23.

A simulator was developed to generate the “truth” data
for each COpNav environment studied. Noisy pseudor-
ange observations were processed by an Extended Kalman
Filter (EKF) to estimate the states of interest. The ob-
servability and estimability were quantified in terms of the
estimation error x̃ , x− x̂ and the corresponding estima-

tion error covariance P , E
[
x̃ x̃T

]
, where x̂ is the EKF

state estimate.

In the following simulations, the system true initial state
x(t0) was fixed, while the EKF initial state estimate x̂(t0)

was generated according to x̂(t0) ∼ N [x(t0),P(t0|t−1)],
where P(t0|t−1) is the EKF initial estimation error co-
variance. All the simulations assumed a receiver whose
initial state is xr(t0) = [0, 0, 0, 250, 10, 10]

T
and SOPs

with initial states xs1(t0) = [50, 50, 10, 10]
T
and xs2(t0) =

[−50, 50, 10, 10]
T
.

The simulations for Case 4 considered an environment
with an unknown receiver and two SOPs, one fully-
known and one partially-known. The observation noise
spectral density was set to r = 25m2. The ini-
tial estimation error covariance matrices of the receiver
and the second SOP were chosen to be Pr(t0|t−1) =
diag

[
100, 100, 100, 100, 3× 104, 300

]
and Ps2(t0|t−1) =

diag
[
3× 104, 300

]
, respectively.

The simulations for Case 7 considered an environment with
a partially-known receiver and two SOPs, one fully-known
and one unknown. The observation noise spectral density
was set to r = 100m2. The initial estimation error co-
variance matrices of the receiver and the second SOP were
chosen to be Pr(t0|t−1) = diag

[
100, 100, 3× 104, 300

]
and

Ps2(t0|t−1) = diag
[
100, 100, 3× 104, 300

]
, respectively.

The simulations for Case 8 considered an environment with
a fully-known receiver and one unknown SOP. The obser-
vation noise spectral density was set to r = 100m2. The
initial estimation error covariance matrix of the SOP was
chosen to bePs1(t0|t−1) = diag

[
100, 100, 3× 104, 300

]
, re-

spectively.

Figures 1, 2, and 3 show the estimation error trajectories
x̃i(tk|tk) for a single-run EKF along with the ±2σi(tk|tk)
estimation error variance bounds for cases 4, 7, and 8,
respectively. Note that the estimation error covariance
converge and that the estimation errors remain bounded,
as would be expected for an observable system.

The eigenvalues associated with the normalized estimation
error covariance (13) in ascending order at the end of the
simulation are given in Table III. It is noted that in all
three cases there is a wide dispersion between the smallest
and largest eigenvalues, indicating the existence of modes
with exceptionally good and exceptionally poor observ-
ability. To determine the directions associated with the
modes with good and poor observability, the eigenvectors
corresponding to the smallest and largest eigenvalues are
calculated and plotted in Figures 4, 5, and 6, respectively.
From Figure 4 it can be concluded that the linear combi-
nation of the fifth and seventh states, corresponding to δtr
and δts, can be estimated exceptionally well with respect
to the rest of the states, whereas a linear combination of
the second, fourth, and sixth states, corresponding to yr,
ẏr, and ys, are poorly observable. From Figure 5 it can
be concluded that the first and second states, correspond-
ing to ẋr and ẏr, can be estimated exceptionally well with
respect to the rest of the states, whereas a linear combi-
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nation of the fifth, sixth, and eighth states, corresponding
to xs2 , ys2 , and δ̇ts2 , are poorly observable. From Figure
6 it can be concluded that the third state, corresponding
to δts, can be estimated exceptionally well with respect to
the rest of the states, whereas a linear combination of the
first, second, and fourth states, corresponding to xs, ys,
and δ̇ts, are poorly observable.

TABLE III

Eigenvalues of Normalized Estimation Error Covariance

Matrix for COpNav Observable Scenarios

Case Eigenvalues

4 1.07× 10−5, 5.56× 10−5, 5.71× 10−3,
1.53× 10−2, 4.00× 10−2, 6.95× 10−1,
2.27, 4.97

7 1.19× 10−7, 1.19× 10−7, 5.78× 10−5,
3.60× 10−4, 4.82× 10−2, 2.56× 10−1,
1.14, 6.56

8 7.27× 10−5, 3.67× 10−2, 5.08× 10−1,
3.45
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Fig. 1. Estimation error trajectories and ±2σ-bounds for case 4 in
Table I
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Fig. 2. Estimation error trajectories and ±2σ-bounds for case 7 in
Table I
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Fig. 3. Estimation error trajectories and ±2σ-bounds for case 8 in
Table I

VI. CONCLUSIONS

This paper studied the observability and estimability of
COpNav environments. It was concluded that a planar
COpNav environment consisting of n receivers with veloc-
ity random walk dynamics making pseudorange measure-
ments on m stationary SOPs is fully-observable if and only
if the initial state(s) of: at least one receiver is fully-known,
or at least one receiver is partially-known and at least one
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Fig. 4. Eigenvector along the most and least observable directions
in the state space for case 4 in Table I
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Fig. 5. Eigenvector along the most and least observable directions
in the state space for case 7 in Table I
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Fig. 6. Eigenvector along the most and least observable directions
in the state space for case 8 in Table I

SOP is fully-known, or at least one SOP is fully-known
and at least one SOP is partially-known. For the observ-
able scenarios, the estimability of the various states in the
environment was analyzed, with particular attention paid
to the directions with exceptionally good and poor observ-
ability.
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