Mapping and Exploitation of Navigation Signals of Opportunity

JOSHUA MORALES, JOE KHALIFE, AND ZAK KASSAS

MOTIVATION

Global navigation satellite system (GNSS) is at the heart of autonomous vehicle navigation systems. However, GNSS signals are unreliable due to:

- Severe attenuation in deep urban canyons
- Intentional and/or unintentional jamming
- Spoofing

APPROACH: CoPNav

Collaborative opportunistic navigation aims to exploit signals of opportunity (SOPs) in the environment.

CHALLENGES

- Unavailability of most SOP emitters’ states (position and clock)
- Less stable clocks than GNSS satellite vehicles
- Unavailability of receiver architectures for navigation observables extraction

ADVANTAGES

- Available from varying geometric configurations
- Abundant and free to use
- Higher received power compared to GNSS signals

OPTIMAL RECEIVER PLACEMENT

Consider a planar environment comprising M unknown SOPs and N arbitrarily placed receivers with knowledge about their own states. The receivers draw pseudorange observations given by

$$ m z_n = \| r_n - r_{\text{true}} \| + c \cdot (\delta t_n - \delta t_{\text{true}}) + \mu n, $$

where z_n represents the pseudorange observation, r_n and r_{true} are the receiver and true positions, respectively, c is the speed of light, δt_n and δt_{true} are the clock errors, and μn is the measurement noise.

1. **Accuracy Improvement: GPS+SOPs**

 (a) minimize
 $$ r_{N+1} \quad \sqrt{\text{tr} \left(H^T:H(r_{N+1}) \right)^{-1} } $$
 (b) maximize
 $$ \det \left(H^T:H(r_{N+1}) \right) $$
 (c) maximize
 $$ \sum_{m=1}^M \log \left| A \left(m \phi_{N+1} \right) \right| $$

2. **Receiver localization improvement**

 Unavailability of SOP emitters’ states
 - Position and clock

3. **Signal Landscape**

 Available from varying geometric configurations

4. **Vertical error reduction**

 Higher received power compared to GNSS signals

EXPLOITING SOPs

1. Accuracy Improvement: GPS+SOPs

 - GPS only
 - GPS+3 SOPs

2. UAV Simulation Results

 - GPS only
 - GPS+3 SOPs
 - True trajectory

EXPERIMENTAL DEMO

1. Collaborative Mapping of SOP

 Receiver trajectories

 - Initial uncertainty
 - Final uncertainty

2. Receiver localization improvement

 Mapped SOP locations
 - Estimated receiver location

ACKNOWLEDGEMENT

This work was supported in part by the Office of Naval Research (ONR) under Grant N00014-16-1-2305.

REFERENCES