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ABSTRACT

A collaborative signal of opportunity (SOP)-aided inertial navigatio n system (INS) framework is presented and stud-
ied. The following problem is considered. Multiple autonomous vehicles (AVs) with access to global navigation
satellite system (GNSS) signals are aiding their on-board INSs with GNSS pseudoranges. While navigating, AV-
mounted receivers draw pseudorange observations on ambient unknown terrestrial SOPs and collaboratively estimate
the SOPs' states. After some time, GNSS signals become unavailable. Subsequently, the AVs exploit the SOPs to
collaboratively aid their INSs. A collaborative estimation framework which uses time-di�erence-of-arrival (TDOA)
measurements taken with reference to a speci�c SOP is presented. This framework is studied over varying the quan-
tity of collaborating AVs, and it is demonstrated that \GNSS-like" pe rformance can be achieved in the absence of
GNSS signals. Experimental results are presented demonstratingmultiple unmanned aerial vehicles (UAVs) collab-
oratively navigating exclusively with their onboard inertial measurement units (IMUs) and pseudoranges extracted
from unknown terrestrial SOPs emanating from two cellular towers.

I. INTRODUCTION

Autonomous vehicles (AVs) will require more accurate and reliable navigation systems than ever before to operate
safely and e�ciently. Traditional navigation systems integrate glob al navigation satellite system (GNSS) with an
inertial navigation system (INS). It is well known that if GNSS signals become unavailable, the errors of the INS's
navigation solution diverge. Recently, signals of opportunity (SOPs) have been considered to enable navigation
whenever GNSS signals become inaccessible or untrustworthy [1{5].Not only could SOPs provide a navigation
solution in a standalone fashion [6{8], but also SOPs could be used as anaiding source for an INS to establish a
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bound on INS errors in the absence of GNSS signals [9]. Collaborating AVs could share information gathered from
SOPs to further reduce the bounds on INS errors [4].

Fusing GNSS and inertial measurement unit (IMU) measurements with loosely-coupled, tightly-coupled, and deeply-
coupled integration strategies are well-studied [10]. Regardless of the coupling type, the errors of a GNSS-aided INS
will diverge in the absence of GNSS signals, and the divergence rate becomes dependent on the quality of the IMU.
Consumer and small-scale applications that use a�ordable micro-electro-mechanical systems (MEMS)-grade IMUs
are particularly susceptible to large error divergence rates. While high quality IMUs may reduce the rate of error
divergence, they may violate cost, size, weight, and/or power constraints.

Current trends to supplement an AV's navigation system in the event that GNSS signals become unusable are
traditionally sensor-based (e.g., cameras [11], lasers [12], and sonar[13]). However, SOPs (e.g., AM/FM radio [14,15],
cellular [6,7,16,17], digital television [18,19], iridium [20,21], and Wi-Fi [22,23]) are free to use and could alleviate
the need for costly aiding-sensors. In [24], a board-mounted transceiver equipped with an IMU was presented along
with experimental results demonstrating the use of SOP Doppler measurements to aid an INS. In [9], a preliminary
study of a novel tightly-coupled SOP-aided INS framework that fused IMU data with SOP pseudoranges along with
GNSS pseudoranges (when available) was conducted. It was demonstrated that bounds could be established on
the estimation errors in the absence of GNSS. The sensitivity of these bounds was studied for a varying quantity
and quality of exploited SOPs. In this paper the SOP-aided INS framework discussed in [9] is extended to include
collaborating AVs.

SOPs are abundant in GNSS-challenged environments, making them particularly attractive aiding sources for an
INS whenever GNSS signals become unavailable. However, unlike GNSSwhere the states of satellite vehicles (SVs)
are readily available, the states of SOPs (positions, clock biases, and clock drifts) may not be known a priori and
must be estimated. This estimation problem is analogous to the simultaneous localization and mapping (SLAM)
problem in robotics [25]. Both problems ask if it is possible for an AV to start at an unknown location in an unknown
environment and then incrementally build a map of the environment while simultaneously localizing itself within this
map. However, in contrast to the static environmental map of the typical SLAM problem, the SOP map is more
complex{ it is dynamic and stochastic. Speci�cally, for pseudorange-only observations, one must estimate not only
the position and velocity states, but also the clock states of both the AV-mounted receiver and the SOPs.

In collaborative SLAM (C-SLAM), multiple AVs share their pose estima tes and observations in order to improve
the quality of their individual state estimates and to build a larger and more accurate map [26]. In this work,
multiple collaborating AVs will be estimating their states (attitude, po sition, velocity, clock bias, and clock drift)
in a three-dimensional (3-D) environment and will make mutual observations on the dynamic and stochastic SOP
map. Speci�cally, SOP pseudorange observations will be shared andthe time-of-arrival (TOA) and time-di�erence-
of-arrival (TDOA) will be considered.

This paper considers an environment comprising multiple AVs and multiple unknown SOPs. Each AV is assumed
to have access to GNSS SV pseudoranges, multiple unknown terrestrial SOP pseudoranges, and an onboard IMU.
While GNSS pseudoranges are available, the AVs collaboratively map the SOPs, estimating the SOPs' positions,
clock biases, and clock drifts. During this mode, the UAVs are navigating with a tightly-coupled GNSS-aided INS
strategy. Suddenly, GNSS pseudoranges become unavailable. TheAVs continue drawing pseudorange observables
from the SOPs and continue estimating the SOPs' states. In this mode, the AVs switch to navigating with a
collaborative tightly-coupled SOP-aided INS strategy. This paper will formulate this proposed strategy and study
how the uncertainty bounds are a�ected by varying the quantity o f collaborating AVs. It is demonstrated that AVs
equipped with consumer-grade IMUs navigating with the proposed strategy could achieve a performance comparable
to when GNSS signals are still available.

The remainder of this paper is organized as follows. Section II describes the dynamics model of the SOPs and
navigating vehicles as well as the receivers' observation model. Section III describes the collaborative SOP-aided INS
framework. Section IV presents simulation results demonstratingthe performance of the framework and compares
the performance for a varying number of collaborating AVs. Section V presents experimental results of collaborating
AVs using cellular signals to aid their INSs. Concluding remarks are given in Section VI.



II. MODEL DESCRIPTION

A. SOP Dynamics Model

Each SOP will be assumed to emanate from a spatially-stationary terrestrial transmitter, and its state vector will

consist of its 3-D position statesr sopm
,

�
xsopm

; ysopm
; zsopm

� T
and clock error statesx clk ;sopm

,
h
c�t sopm

; c_�t sopm

i T
,

where c is the speed of light, �t sopm
is the clock bias, _�t sopm

is the clock drift, m = 1 ; : : : ; M , and M is the total
number of SOPs.

The SOP's discretized dynamics are given by
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=
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where T is the constant sampling interval. The terms Sw �t sop m
and Sw _� t sop m

are the clock bias and drift process

noise power spectra, respectively, which can be related to the power-law coe�cients,
�

h�; sopm

	 2
� = � 2, which have

been shown through laboratory experiments to characterize thepower spectral density of the fractional frequency
deviation of an oscillator from nominal frequency according toSw �t sop m

t h0; sop m
2 and Sw _� t sop m

t 2� 2h� 2;sopm
[27].

B. Vehicle Dynamics Model

The nth AV-mounted navigating receiver's state vector x r n is comprised of the INS statesx B n and the receiver's

clock statesx clk ;r n ,
h
c�t r n ; c_�t r n

i T
, i.e., x r n =

h
x T

B n
; x T

clk ;r n

i T
where n = 1 ; : : : ; N , and N is the total number of

AVs.

The INS 16-state vector is

x B n =
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B
G �q

T
n ; r T

r n
; vT

r n
; bT

gn
; bT

an

i T
;

where B
G �qn is the 4-D unit quaternion in vector-scalar form which represents the orientation of the body frame with

respect to a global frame [28], e.g., the Earth-centered inertial (ECI) frame; r r n and vr n are the 3-D position and
velocity, respectively, of the AV's body frame expressed in a globalframe; and bgn and ban are the gyroscope and
accelerometer biases, respectively.

B.1 Receiver Clock State Dynamics

The nth AV-mounted receiver's clock states will evolve in time according to

x clk ;r n (k + 1) = F clk x clk ;r n (k) + w clk ;r n (k); (2)

where w clk ;r n is the process noise vector, which is modeled as a DT zero-mean whitenoise sequence with covariance
Qclk ;r n , which has an identical form to Qclk ;sopm

, except that Sw �t sop m
and Sw _� t sop m

are now replaced with receiver-
speci�c spectra Sw �t r n

and Sw _� t r n
, respectively.

B.2 INS State Dynamics

The IMU on the nth AV contains a triad-gyroscope and a triad-accelerometer which produce measurementsz imu n ,
�
! T

imu n
; aT

imu n

� T
of the angular rate and speci�c force, which are modeled as

! imu n = B ! n + bgn + n gn



a imu n = R
h

B k
G �qn

i � Gan � G gn

�
+ ban + n an ;

where B ! n is the 3-D rotational rate vector, G an is the 3-D acceleration of the IMU in the global frame, B k
G �qn

represents the orientation of the body frame in a global frame at time-stepk, R [ �qn ] is the equivalent rotation matrix
of �qn , G gn is the acceleration due to gravity of thenth AV in the global frame, and n gn and n an are measurement noise
vectors, which are modeled as zero-mean white noise sequences with covariances� 2

gn
I 3� 3 and � 2

an
I 3� 3, respectively.

It is worth noting that a non-rotating global reference frame is assumed in the above IMU measurement models.
For rotating frames, such as the Earth-centered Earth-�xed frame (ECEF), the rotation rate of the Earth and the
Coriolis force should also be modeled, as discussed in [29].

The orientation of the INS will evolve in DT according to

B k +1
G �qn = B k +1

B k
�q

n

 B k

G �qn ; (3)

where B k +1

B k
�q

n
represents the relative rotation of the nth AV's body frame from time-step k to k + 1 and 
 is the

quaternion multiplication operator. The unit quaternion B k +1

B k
�q

n
is the solution to the di�erential equation
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where tk , kT and for any vector ! 2 R3, the matrix 
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where ! i are the elements of the vector! .

The velocity will evolve in time according to

vr n (k + 1) = vr n (k) +
Z t k +1

t k

G an (� )d� : (5)

The position will evolve in time according to

r r n (k + 1) = r r n (k) +
Z t k +1

t k

vr n (� )d�: (6)

The evolution of bgn and ban will be modeled as random walk processes, i.e.,_ban = wan and _bgn = wgn with
E[wgn ] = E[wan ] = 0, cov[wgn ] = � 2

wg n
I 3, and cov[wan ] = � 2

wa n
I 3. The above attitude, position, and velocity

models are discussed in detail in [30].

C. Receiver Observation Model

The pseudorange observation made by thenth receiver on themth SOP, after discretization and mild approximations
discussed in [31], is related to the receiver's and SOP's states by

zr n ;sopm
(j ) = kr r n (j ) � r sopm

k2 + c �
�
�t r n (j ) � �t sopm

(j )
�

+ vr n ;sopm
(j ); (7)

where vr n ;sopm
is modeled as a DT zero-mean white Gaussian sequence with variance� 2

r n ;sopm
. The pseudorange

observation made by thenth receiver on thel th GNSS SV, after compensating for ionospheric and tropospheric delays
is related to the receiver states by

zr n ;sv l (j ) = kr r n (j ) � r sv l (j )k2 + c � [�t r n (j ) � �t sv l (j )] + vr n ;sv l (j ); (8)

where,zr n ;sv l , z0
r n ;sv l

� c�t iono � c�t tropo , �t iono and �t tropo are the ionospheric and tropospheric delays, respectively,
z0

r n ;sv l
is the uncorrected pseudorange,vr n ;sv l is modeled as a DT zero-mean white Gaussian sequence with variance

� 2
r n ;sv l

, l = 1 ; : : : ; L , and L is the total number of GNSS SVs.



III. COLLABORATIVE SOP-AIDED INERTIAL NAVIGATION

In this section, the collaborative SOP-aided INS framework is described in detail.

A. Problem Formulation

ConsiderN navigating AVs, each of which is equipped with an IMU and receivers capable of producing pseudoranges
to the same L GNSS SVs andM unknown SOPs. The goal of the collaborative SOP-aided INS framework is
threefold. First, when GNSS pseudoranges are available, SOP pseudoranges will be used to (1) map all available
SOPs in the AVs' vicinity and (2) supplement a GNSS-aided INS to improve the accuracy of the navigation solution.
Second, when GNSS pseudoranges become unavailable, the pseudoranges drawn from the mapped SOPs will be
used exclusively as an aiding source to correct the accumulating errors of their INSs. Third, the IMU data, GNSS
and SOP pseudoranges, and state estimates of all collaborating AVs are shared through an extended Kalman �lter
(EKF)-based central fusion center (CFC) to improve the estimation performance compared to a single AV using an
SOP-aided INS as was described in [9].

To exploit SOPs for navigation, their states must be known [32,33]. However, in many practical scenarios, the SOP
transmitter positions are unknown. Furthermore, the SOPs' clock states are dynamic and stochastic; therefore, they
must be continuously estimated. To tackle these problems, a C-SLAM-type framework is adapted that operates
in a collaborative mapping mode when GNSS psuedoranges are availableand in a C-SLAM mode when GNSS
pseudoranges are unavailable. A high-level diagram of this framework is illustrated in Fig. 1. In the following
subsections, each mode of the collaborative SOP-aided INS framework is described.
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zimu1
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SOP
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and

SOP
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AV N
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zimuN

P(j jj )
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Current
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zr1;sop
zr1;sv

zrN ;sop zrN ;sv

Fig. 1. Centralized collaborative SOP-aided INS that produ ces a state estimate x̂ ( 0) and an estimation error covariance P . All N
collaborating AVs send their IMU data z imu n , GNSS pseudoranges z r n ;sv , and SOP pseudoranges z r n ;sop to a tightly-coupled EKF-
based CFC which operates in two modes: (1) collaborative map ping mode: x̂ ( 0) � x̂ and P � P x , where x̂ and P x are the state estimate
and the estimation error covariance, respectively, or (2) C -SLAM mode: x̂ ( 0) � x̂ 0 and P � P x 0, where x̂ 0 and P x 0 are the state estimate
and the estimation error covariance, respectively.

B. Collaborative Mapping Mode

In this subsection, the collaborative mapping mode is described. During this mode, all AV-mounted receivers have
access to GNSS and SOP signals.

B.1 Error State Model

During the collaborative mapping mode, the EKF produces an estimate x̂ (kjj ) , E[x (k)jf z(i )gj
i =1 ] of x (k) and an

associated estimation error covarianceP x (kjj ) , E[~x (kjj ) ~x T (kjj )]. In what follows, it is assumed that k � j and j
is the last time-step an INS-aiding source was available, and
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:

The EKF error state is de�ned as
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where
~x B n =

� ~� T
n ~r T
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~bT
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;

where ~� n 2 R3 is the 3-axis error angle vector. The position, velocity, and clock errors are de�ned as the standard
additive error, e.g., ~r sop1

, r sop1
� r̂ sop1

. The orientation error is related through the quaternion product

B
G �qn = B

G �̂qn 
 � �qn ;

where the error quaternion � �qn is the small deviation of the estimateB
G �̂qn from the true orientation B
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:

B.2 State Propagation

Between aiding updates, the central INS usesf z imu n gN
n =1 and the dynamics discussed in Section II to propagate the

estimate and produce the corresponding prediction error covariance. The SOP state estimate propagation follows
from (1) and is given by

x̂ sopm
(k + 1 jj ) = F sop x̂ sopm

(kjj ):

Since the gyroscope and accelerometer biases evolve according toa random walk, their state estimate propagation
equations are given by

b̂gn (k + 1 jj ) = b̂gn (kjj ) and b̂an (k + 1 jj ) = b̂an (kjj ):

In order to propagate the receiver's orientation state estimate,the di�erential equation in (4) must be solved. In
this paper, a fourth order Runge-Kutta method is employed and the solution to (4) is given by

B k +1

B k
�̂q

n
= �q0 +

T
6
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where B !̂ n (tk ) = ! imu n (tk ) � b̂gn (kjj ). There is no guarantee that the quaternion vector obtained in (10) will be a

unit vector, and therefore it must be normalized, i.e.,B k +1
B k

�̂q
n

 B k +1
B k

�̂q
n

. �
�
�
�
�
�
B k +1
B k

�̂q
n

�
�
�
�
�
�
2

. The orientation state estimate
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The integral in (5) is solved using trapezoidal integration and the velocity state estimate is propagated according to
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. Similarly, the integral in (6) is solved using

trapezoidal integration and the position state estimate is propagated according to
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T
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Finally, the receiver's clock state estimate propagation follows from(2) and is given by

x̂ clk ;r n (k + 1 jj ) = F clk x̂ clk ;r n (kjj ):



B.3 Covariance Propagation

During the collaborative mapping mode, the one-step prediction error covariance is given by

P x (k + 1 jj ) = FP x (kjj )FT + Q; (11)
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�
;

where � B n is the nth AV's DT linearized INS state transition matrix and Q r n , diag
�
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�
, where

Qd;B n is the nth AV's DT linearized INS state process noise covariance. The DT linearized INS state transition
matrix � B n is given by
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The DT linearized INS state process noise covarianceQd;B n is given by

Qd;B n =
T
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B n

N cn � B n + N cn ;

where
N cn = diag

h
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The detailed derivations of � B n and Qd;B n are described in [29,34].

B.4 Measurement Update

When an INS-aiding source is available, the EKF update step will correct the INS and clock errors using the standard
EKF update equations [35]. In the collaborative mapping mode, i.e.,z ,
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uncorrelated pseudorange measurement noise, the measurement noise covariance is given by

R = diag [ R sv ; R sop ] ; R sv , diag [R r 1 ;sv ; : : : ; R r N ;sv ] ; R sop , diag [R r 1 ;sop; : : : ; R r N ;sop ] ;

where R r n ;sv , diag
�

� 2
r n ;sv1

; : : : ; � 2
r n ;svL

�
and R r n ;sop , diag

h
� 2

r n ;sop1
; : : : ; � 2

r n ;sopM

i
. The update will produce the

posterior estimate x̂ (j jj ) and an associated posterior estimation error covarianceP x (j jj ).



C. C-SLAM Mode

In the C-SLAM mode, TDOA measurements taken in reference to the �rst SOP are used, i.e., the measurement
from the nth AV-mounted receiver to the mth SOP becomesz0

r n ;sopm
, zr n ;sopm

� zr n ;sop1
. The time bias in such

measurement is parameterized only by the clock biases of the SOPs,hence the receivers' clock biases no longer need
to be estimated. Moreover, the di�erence of the SOPs' clock biases is estimated instead of the individual clock biases.
The EKF implementation of this mode is discussed next.

C.1 Error State Model

In the C-SLAM mode the EKF produces an estimate x̂ 0(kjj ) , E[x 0(k)jf z0(i )gj
i =1 ] of x (k), and an associated

estimation error covarianceP x 0(kjj ) , E[~x 0(kjj ) ~x 0T (kjj )] where

x 0 ,
h
x T

B 1
; : : : ; x T

B N
; r T

sop1
; r T

sop2
; � x T

clk ;sop2
; : : : ; r T

sopM
; � x T

clk ;sopM

i T
; � x clk ;sopm

,
h
c� �t clk ;sopm

; c� _�t clk ;sopm

i T
;

wherec� �t clk ;sopm
, c�t sopm

� c�t sop1
and c� _�t clk ;sopm

, c_�t sopm
� c_�t sop1

, and the new set of measurementsz0 are

z0 = T z zsop =
�
z0T

r 1 ;sop; : : : ; z0T
r N ;sop

� T
; z0T

r n ;sop ,
�
z0

r n ;sop2
; : : : ; z0

r n ;sopM

� T
;

where T z is the transformation that maps z to z0. The EKF error state is de�ned as

~x 0 ,
h

~x T
B 1

; : : : ; ~x T
B N

; ~r T
sop1

; ~r T
sop2

; � ~x T
clk ;sop2

; : : : ; ~r T
sopM

; � ~x T
clk ;sopM

i T
: (12)

C.2 State and Covariance Propagation

In this mode, the AVs' INS states and SOPs' position states are propagated using the same equations as in the collab-
orative mapping mode. The new clock states are propagated according to � x̂ clk ;sopm

(k+1 jj ) = F clk � x̂ clk ;sopm
(kjj ).

The prediction error covarianceP x 0(k + 1 jj ) has the same form as (11), except thatF and Q are replaced with F0

and Q0, respectively, where

F0, diag[� B 1 ; : : : ; � B N ; I 3� 3; F sop ; : : : ; F sop] ; Q0 = T x QT T
x ;

where T x is the transformation that maps ~x to ~x 0.

C.3 Measurement Update

The C-SLAM mode update step is similar to the collaborative mapping mode update except the measurement
Jacobian is replaced with

H 0 =
�

H 0
B ; H 0

sop

�
; H 0

B , diag
�
H 0

B 1
; : : : ;H 0

B N

�
; H 0

sop,
�
H 0T

sop;r 1
; : : : ;H 0T

sop;r N

� T
;

H 0
B n

,

2

6
4

01� 3 1̂r n ;sop2
� 1̂r n ;sop1

01� 9
...

...
...

01� 3 1̂r n ;sopM
� 1̂r n ;sop1

01� 9

3

7
5 ; H 0

sop;r n ,

2

6
4

1̂r n ;sop1
	 sop2 ;r n � � � 0

...
...

. . .
...

1̂r n ;sop1
0 � � � 	 sopM ;r n

3

7
5 ;

and the measurement noise covariance is replaced withR 0 = T z R sopT T
z . The update will produce the posterior

estimate x̂ 0(j jj ) and an associated posterior estimation error covarianceP x 0(j jj ).

IV. Simulation results

In this section, the estimation performance of the collaborative SOP-aided INS framework described in Section III
is analyzed using a simulator which generated (i) the true states of the navigating AVs, (ii) the SOPs' states, (iii)
noise-corrupted IMU measurements of speci�c forcea imu n and angular rates ! imu n for each vehicle, and (iv) noise-
corrupted pseudoranges from each vehicle to multiple SOPs and GPSSVs. Details of this simulator are provided
next.



A. Simulator

The states ofN AVs were simulated. Each AV-mounted receiver was set to be equipped with a typical temperature-
compensated crystal oscillator (TCXO), with f h0;r n ; h� 2;r n g = f 9:4 � 10� 20; 3:8 � 10� 21g, where n = 1 ; :::; N . Each
simulated trajectory corresponded to an unmanned aerial vehicle(UAV), which included two straight segments, a
climb, and a repeating orbit, performed over a 200 second period. The trajectories were generated using a standard
six degree-of-freedom (6DoF) kinematic model for airplanes [29]. Excluding trajectories generated in a closed-loop
fashion so to optimize the vehicles' and SOPs' estimates [36], this type of open-loop trajectory has been demonstrated
to produce better estimates than an open-loop random trajectory [37,38].

The IMU signal generator models a triad gyroscope and a triad accelerometer. The data yi (t) for the i th axis of the
gyroscope and accelerometer were generated atT = 100 Hz according to

yi (t) = (1 + � k i ) � [ui (t) + bi (t) + � MA i + � Q i + � RRW i + � RR i ];

where ui (t) is either the vehicle's actual acceleration or angular rotation ratefor axis i , � k i is the scale factor,bi (t)
is a random bias which is driven by the bias instability, � MA i is the misalignment, � Q i is quantization noise, � RRW i

is rate random walk, and � RR i is rate ramp [39]. The magnitude of these errors and their driving statistics are
determined by the grade of the IMU. Data for a consumer-grade IMU was generated for this work.

GPS L1 C/A pseudoranges were generated at 1 Hz according to (8)using SV orbits produced from Receiver In-
dependent Exchange (RINEX) �les downloaded on October 22, 2016 from a Continuously Operating Reference
Station (CORS) server [40]. They were set to be available fort 2 [0; 50) seconds, and unavailable fort 2 [50; 200]
seconds. Pseudoranges were generated to six SOPs at 5 Hz according to (7) and the SOP dynamics discussed in
Subsection II-A. Each SOP was set to be equipped with a typical oven-controlled crystal oscillator (OCXO), with
f h0;sopm

; h� 2;sopm
g = f 8 � 10� 20; 4 � 10� 23g, where m = 1 ; :::; 6. The SOP emitter positions

�
r sopm

	 6
m =1 were sur-

veyed from cellular tower locations in downtown Los Angeles, California. The simulated trajectories, SOP positions,
and the vehicles' positions at the time GPS was set to become unavailable are illustrated in Fig. 2.

Vehicles' trajectories GPS cut o� locationSOPs' positions

Fig. 2. True UAVs' traversed trajectories (yellow), SOP loc ations (blue pins), and the vehicles' positions at the time G PS was cut o�
(red).

B. Results

To demonstrate the performance of the collaborative SOP aided-INS framework, the environment described in
Subsection IV-A was simulated. Two scenarios were considered: (i)an environment consisting of four AVs (N = 4)
and (ii) an environment consisting of a single AV (N = 1). Each vehicle was assumed to be equipped with a
consumer-grade IMU and have access to pseudoranges drawn from the same six SOPs (M = 6). The initial errors
of the navigating AVs' states were initialized according to ~x r n (0j0) � N

�
017� 1; P x r n

(0j0)
�
, where P x r n

(0j0) �
diag

�
(10� 2) � I 3� 3; 9 � I 3� 3; I 3� 3; (10� 6) � I 6� 6; 9; 1

�
for n = 1 ; : : : ; 4. The SOP state estimates were initialized



according to x̂ sopm
(0j0) � N

�
x sopm

(0); P sop(0j0)
�
, for m = 1 ; : : : ; 6, wherex sopm

(0) �
h
r T

sopm
; 104; 10

i T
, P sop(0j0) �

(104) � diag [1; 1; 1; 0:1; 0:01].

The resulting estimation error trajectories and corresponding 3� bounds for the position, velocity, and attitude of
one of the AVs and the position of one of the SOPs are plotted in Figs.3 (a)-(l). For a comparative analysis, the 3�
bounds produced by a traditional GPS-aided INS are also plotted. The plots in Figs. 4 (a) and (b) correspond to
the estimation errors of the receiver's clock states with GPS available and the plots in Figs. 4 (c) and (d) correspond
to the estimation errors of the SOP's clock states while GPS was available. Figs. 4 (e) and (f) correspond to the
estimation errors of the relative SOP clock biases and drifts that were initialized when GPS became unavailable, as
was described in Subsection III-C.1.
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N = 1: Error 3� N = 4: Error 3� GPS cut o�

Time [s]

GPS-aided INS:3�

Time [s]

Fig. 3. The results of two scenarios are illustrated. In both scenarios, each navigating UAV had access to GPS pseudorang es for only
the �rst 50 seconds while traversing the trajectories illus trated in Fig. 2. In the �rst scenario, four AVs ( N = 4) using a centralized
collaborative SOP-aided INS produced the estimation error trajectories and corresponding 3 � bounds (black). In the second scenario, one
AV ( N = 1) with an SOP-aided INS produced the estimation error traj ectories and corresponding 3� bounds (orange). For a comparative
analysis, the 3� bounds for a traditional GPS-aided INS are shown (green). No rth, East, and down (NED) errors are shown for position
and velocity. Roll, pitch, and yaw (rpy) errors are shown for the orientation.

The following may be concluded from these plots. First, without aiding, the estimation error uncertainties diverge (as
expected), but with SOP aiding, the error uncertainties are bounded (in the absence of GPS). Second, the produced
estimation uncertainties of the position states for both the AV and the SOP whenN = 4 are signi�cantly less than
the ones produced whenN = 1. Moreover, the estimator's transient phase for both the AV and the SOP whenN = 4
is shorter than the transient phase whenN = 1, especially for the SOP's position states.
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Fig. 4. Estimation error trajectories and 3 � bounds for four AVs ( N = 4) using a centralized collaborative SOP-aided INS (black ) and
a single AV ( N = 1) using an SOP-aided INS (orange). (a) and (b) correspond t o the receiver's clock states while GPS was available
and (c) and (d) correspond to the SOP's clock states while GPS was available. (e) and (f) correspond to � x clk ;sop 2

during the C-SLAM
mode.

B.1 Performance Analysis: Quantity of Collaborating AVs

To study the performance of the collaborative SOP-aided INS framework over a varying number of collaborating
AVs, six separate simulation runs were conducted: four runs where the collaborative SOP-aided INS framework was
employed (N = 1 ; :::; 4) and two runs where a traditional GPS-aided INS is used (N = 1). One of the GPS-aided
INS runs uses only an INS after the GPS cut o� time, while the other assumes GPS to be available during the entire
run. Fig. 5 illustrates the resulting log f det [P r r ]g for each run, which is related to the volume of the uncertainty
ellipsoid [38].

lo
gf

de
t [P

r r
]g

Time [s]

GPS cut o�
N = 2
N = 3
N = 4

N = 1

GPS-aided INS,N = 1

INS only,N = 1

Fig. 5. Multiple UAVs traverse the trajectories illustrate d in Fig. 2. GPS pseudoranges become unavailable at 50s (red d otted line) and
the N vehicles continue to navigate using C-SLAM as described in S ubsection III-C. The logarithm of the determinant of the est imation
error covariance for the position of one of the AVs is plotted for a varying number of total collaborators N . Moreover, the logarithm of
the determinant of the estimation error covariance for the p osition of one of the AVs navigating using (i) a traditional G PS-aided INS
with continuous GPS access (green) and (ii) an INS only (gree n dashed) is plotted for comparison.

The following may be concluded from Fig. 5 about the collaborative SOP-aided INS framework. First, a bound
may be speci�ed on the estimation uncertainties for any number of collaborating AVs in the environment. Second,
the estimation performance is always improved as more collaboratingAVs are added to the environment. However,
this performance improvement, which is captured by the distance between the logf det [P r r ]g curves, becomes less
signi�cant as the number of collaborating AVs increases. The maximum improvement is obtained when going from
one AV to two collaborating AVs. Third, when GPS becomes unavailable, the collaborative SOP-aided INS will
perform signi�cantly better than an INS only for any number of colla borating AVs in the environment. Fourth,
two or more collaborating AVs equipped with SOP-aided INSs which arein the absence of GPS signals can achieve



estimation performance comparable to one AV equipped with a traditional GPS-aided INS with access to GPS signals
from eleven GPS SVs.

V. EXPERIMENTAL RESULTS

A �eld experiment was conducted using two IMU-equipped UAVs and software-de�ned receivers (SDRs) to demon-
strate the collaborative SOP-aided INS framework discussed in Section III. To this end, two antennas were mounted
on each UAV to acquire and track GPS signals and multiple cellular base transceiver stations (BTSs) whose signals
were modulated through code division multiple access (CDMA). The GPS and cellular signals were simultaneously
downmixed and synchronously sampled via two-channel EttusR universal software radio peripherals (USRPs). These
front-ends fed their data to the Multichannel Adaptive TRansceiver Information eXtractor (MATRIX) SDR, which
produced pseudorange observables from all GPS L1 C/A signals in view and two cellular BTSs [6]. The IMU data
was sampled from the UAV's on-board proprietary navigation system, which was developed by Autel RoboticsR .
Fig. 6 depicts the experimental hardware setup and Fig. 7 (a) illustrates the experimental environment.

Experimental results are presented for two estimators: (i) the collaborative SOP-aided INS described in this paper
and (ii) for comparative analysis, a traditional GPS-aided INS using the UAV's IMU. The UAVs traversed the white
trajectories plotted in Figs. 7 (c) and (d), which consist of GPS unavailability runs of 15 seconds. The North-East
root mean squared errors (RMSEs) of the GPS-aided INSs' navigation solutions after GPS became unavailable were
9.9 and 14.55 meters, respectively. The UAVs also collaboratively estimated their trajectories using C-SLAM using
the two cellular BTSs illustrated in Figs. 7 (b) and (e) to aid their on-bo ard INSs. The North-East RMSEs of the
UAVs' trajectories were 4.03 and 4.34 meters, respectively, and the �nal localization error of the cellular BTSs were
25.9 and 11.5 meters, respectively. The North-East 99th -percentile initial and �nal uncertainty ellipses of the BTSs
position states are illustrated in Fig. 7 (a). The UAVs' RMSEs and �na l errors are tabulated in Table I. It is worth
noting that only two cellular BTSs were exploited in this experiment. Th e RMSE reduction from the collaborative
SOP-aided INS will be even more signi�cant when more SOPs are included.

MATLAB-based
SOP-aided INS

MATRIX SDR
LabVIEW-based

Cellular and GPS antennas

Universal software

IMU data

PseudorangesCDMA

radio peripheral
(USRP)

signals

Fig. 6. Experiment hardware setup.

TABLE I

Experimental Estimation Errors

Framework Unaided INS SOP-aided INS (C-SLAM)

Vehicle UAV 1 UAV 2 UAV 1 UAV 2

RMSE (m) 9:9 14:5 4:0 4:3

Final Error (m) 27:8 24:5 6:3 4:3

VI. CONCLUSION

This paper presented and studied a collaborative SOP-aided INS framework. Details of the framework were pre-
sented for implementation. Its performance was studied over a varying number of collaborating AVs and was shown
to produce position estimation uncertainties comparable to a traditional GPS-aided INS when two or more AVs
collaborated. Moreover, experimental results demonstrated two UAVs navigating with the collaborative SOP-aided
INS framework using two cellular BTSs in the absence of GPS, which yielded UAV trajectory RMSE reductions of
59.3% and 70.2%, respectively, when compared to unaided INSs.
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