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ABSTRACT

A collaborative signal of opportunity (SOP)-aided inertial navigatio n system (INS) framework is presented and stud-
ied. The following problem is considered. Multiple autonomous vehicles AVs) with access to global navigation
satellite system (GNSS) signals are aiding their on-board INSs with GI$S pseudoranges. While navigating, AV-
mounted receivers draw pseudorange observations on ambient known terrestrial SOPs and collaboratively estimate
the SOPs' states. After some time, GNSS signals become unavailabl&subsequently, the AVs exploit the SOPs to
collaboratively aid their INSs. A collaborative estimation framework which uses time-di erence-of-arrival (TDOA)
measurements taken with reference to a speci c SOP is presented his framework is studied over varying the quan-
tity of collaborating AVs, and it is demonstrated that \GNSS-like" pe rformance can be achieved in the absence of
GNSS signals. Experimental results are presented demonstratingqiultiple unmanned aerial vehicles (UAVS) collab-
oratively navigating exclusively with their onboard inertial measurement units (IMUs) and pseudoranges extracted
from unknown terrestrial SOPs emanating from two cellular towers

[. INTRODUCTION

Autonomous vehicles (AVs) will require more accurate and reliable naigation systems than ever before to operate
safely and e ciently. Traditional navigation systems integrate glob al navigation satellite system (GNSS) with an
inertial navigation system (INS). It is well known that if GNSS signals become unavailable, the errors of the INS's
navigation solution diverge. Recently, signals of opportunity (SOP$ have been considered to enable navigation
whenever GNSS signals become inaccessible or untrustworthy [1{5]Not only could SOPs provide a navigation
solution in a standalone fashion [6{8], but also SOPs could be used as aiding source for an INS to establish a
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bound on INS errors in the absence of GNSS signals [9]. Collaboratings could share information gathered from
SOPs to further reduce the bounds on INS errors [4].

Fusing GNSS and inertial measurement unit (IMU) measurements wih loosely-coupled, tightly-coupled, and deeply-
coupled integration strategies are well-studied [10]. Regardless ohé coupling type, the errors of a GNSS-aided INS
will diverge in the absence of GNSS signals, and the divergence rateebomes dependent on the quality of the IMU.
Consumer and small-scale applications that use a ordable micro-elém-mechanical systems (MEMS)-grade IMUs
are particularly susceptible to large error divergence rates. While lgh quality IMUs may reduce the rate of error

divergence, they may violate cost, size, weight, and/or power castraints.

Current trends to supplement an AV's navigation system in the even that GNSS signals become unusable are
traditionally sensor-based (e.g., cameras [11], lasers [12], and sorj&B]). However, SOPs (e.g., AM/FM radio [14,15],

cellular [6,7,16,17], digital television [18, 19], iridium [20, 21], and Wi-Fi [2, 23]) are free to use and could alleviate
the need for costly aiding-sensors. In [24], a board-mounted trasteiver equipped with an IMU was presented along
with experimental results demonstrating the use of SOP Doppler masurements to aid an INS. In [9], a preliminary

study of a novel tightly-coupled SOP-aided INS framework that fused IMU data with SOP pseudoranges along with
GNSS pseudoranges (when available) was conducted. It was densirated that bounds could be established on
the estimation errors in the absence of GNSS. The sensitivity of thee bounds was studied for a varying quantity

and quality of exploited SOPs. In this paper the SOP-aided INS fram&vork discussed in [9] is extended to include
collaborating AVs.

SOPs are abundant in GNSS-challenged environments, making themapticularly attractive aiding sources for an

INS whenever GNSS signals become unavailable. However, unlike GNS#ere the states of satellite vehicles (SVs)
are readily available, the states of SOPs (positions, clock biases, drclock drifts) may not be known a priori and

must be estimated. This estimation problem is analogous to the simultaeous localization and mapping (SLAM)

problem in robotics [25]. Both problems ask if it is possible for an AV to sart at an unknown location in an unknown

environment and then incrementally build a map of the environment while simultaneously localizing itself within this

map. However, in contrast to the static environmental map of the typical SLAM problem, the SOP map is more

complex{ it is dynamic and stochastic. Speci cally, for pseudorangeonly observations, one must estimate not only
the position and velocity states, but also the clock states of both he AV-mounted receiver and the SOPs.

In collaborative SLAM (C-SLAM), multiple AVs share their pose estimates and observations in order to improve
the quality of their individual state estimates and to build a larger and more accurate map [26]. In this work,
multiple collaborating AVs will be estimating their states (attitude, po sition, velocity, clock bias, and clock drift)
in a three-dimensional (3-D) environment and will make mutual obsevations on the dynamic and stochastic SOP
map. Speci cally, SOP pseudorange observations will be shared anthe time-of-arrival (TOA) and time-di erence-
of-arrival (TDOA) will be considered.

This paper considers an environment comprising multiple AVs and multide unknown SOPs. Each AV is assumed
to have access to GNSS SV pseudoranges, multiple unknown terteisl SOP pseudoranges, and an onboard IMU.
While GNSS pseudoranges are available, the AVs collaboratively map t SOPs, estimating the SOPSs' positions,
clock biases, and clock drifts. During this mode, the UAVs are navigting with a tightly-coupled GNSS-aided INS
strategy. Suddenly, GNSS pseudoranges become unavailable. T#/s continue drawing pseudorange observables
from the SOPs and continue estimating the SOPs' states. In this mde, the AVs switch to navigating with a
collaborative tightly-coupled SOP-aided INS strategy. This paper will formulate this proposed strategy and study
how the uncertainty bounds are a ected by varying the quantity of collaborating AVs. It is demonstrated that AVs
equipped with consumer-grade IMUs navigating with the proposed sategy could achieve a performance comparable
to when GNSS signals are still available.

The remainder of this paper is organized as follows. Section Il desdres the dynamics model of the SOPs and
navigating vehicles as well as the receivers' observation model. S&m Il describes the collaborative SOP-aided INS

framework. Section IV presents simulation results demonstratingthe performance of the framework and compares
the performance for a varying number of collaborating AVs. Sectim V presents experimental results of collaborating

AVs using cellular signals to aid their INSs. Concluding remarks are give in Section VI.



II. MODEL DESCRIPTION
A. SOP Dynamics Model

Each SOP will be assumed to emanate from a spatially-stationary terestrial transmitter, and iﬁs state vector V\Ili||

T
consist of its 3-D position statesr sop, ,  Xsop,, ; Ysop,, + Zsop,, T and clock error stateéSX ci;sop,, » Clsop, s CLsop,
where c is the speed of light, tsop ~is the clock bias, tsop, is the clock drift, m =1;:::;M, and M s the total
number of SOPs.
The SOP's discretized dynamics are given by
X sop,, (k+1)= I:sop X sop,, (k) + Wsop,, (k); k=1;2:::; (1)
h iT
where Xsop, = rSTopm ; xI,k;Sopm , Fsop = diag[ls 3; Fck], Wsop,, is the process noise, which is modeled as a
discrete-time (DT) zero-mean white noise sequence with covaria®Qsep = diag 03 3; CZQC”(;Sopm , and
" 3 2
F _ 1 T . Q _ Swl SOp m T + Sw_tsop TT Sw_tsop TT .
ck = ) clk;sop,, — T2 m )
O 1 ~tsop T S\N45°pm

where T is the constant sampling interval. The terms S, wop and S‘Msop are the clock bias and drift process

. . . "o 2 .
noise power spectra, respectively, which can be related to the paw-law coe cients, h; s, ~_ ,, Which have
been shown through laboratory experiments to characterize thepower spectral density of the fractional frequency

deviation of an oscillator from nominal frequency according toS,, t h"s% and S‘Msop t 2 2h 2sop,, [27].

t sop

B. Vehicle Dynamics Model

The n™ AV-mounted navigating rleceiver's state, vector X, isI comprised of the INS statesxg, and the receiver's
T T

h h
clock statesxci;r, » Ctr,;Ctr, ,ie€,Xr, = XL ;X&., ~ Wheren=1;:::;N, and N is the total number of
AVs.
The INS 16-state vector is h i
— T, . . . .
XB, = @&dn: r{; v by bl

where(‘f_i,qn is the 4-D unit quaternion in vector-scalar form which represents he orientation of the body frame with

respect to a global frame [28], e.g., the Earth-centered inertial (EI) frame; r,, and v, are the 3-D position and
velocity, respectively, of the AV's body frame expressed in a globaframe; and by, and b,, are the gyroscope and
accelerometer biases, respectively.

B.1 Receiver Clock State Dynamics

The n" AV-mounted receiver's clock states will evolve in time according to
Xclk;rn(k"'l) = Fclkxclk;rn(k)+ Wclk;rn(k); (2)
wherew ., is the process noise vector, which is modeled as a DT zero-mean whit@ise sequence with covariance

Qcik;r, » Which has an identical form to Qcik;sop,, » €XCEpL that S, . and Sw, are now replaced with receiver-
SOP m S0P m
speci ¢ spectra Sy, o and S, , respectively.

B.2 INS State Dynamics

The IMU on the n" AV contains a triad-gyroscope and a triad-accelerometer which poduce measurementZim,, ,

T . .
troal, of the angular rate and speci c force, which are modeled as
n n

. — B
!lmun— !n+bgn+n9n



h i

— B G
aimun =R qun

G

an Jn +ban+nan;

where B! , is the 3-D rotational rate vector, ®a, is the 3-D acceleration of the IMU in the global frame, gkqn

represents the orientation of the body frame in a global frame at ime-stepk, R [g,] is the equivalent rotation matrix
of gn, ©g, is the acceleration due to gravity of then™ AV in the global frame, and ng, andn,, are measurement noise
vectors, which are modeled as zero-mean white noise sequenceshaébvariances Sn I 3 and §n I3 3, respectively.
It is worth noting that a non-rotating global reference frame is assumed in the above IMU measurement models.
For rotating frames, such as the Earth-centered Earth- xed frame (ECEF), the rotation rate of the Earth and the
Coriolis force should also be modeled, as discussed in [29].

The orientation of the INS will evolve in DT according to

"Gy =8 d, &0 @)

k+1
k

guaternion multiplication operator. The unit quaternion Et” a, is the solution to the di erential equation

Whereg g, represents the relative rotation of the n™ AV's body frame from time-step k to k +1 and s the

1
5.0 =5 “ln() 8, 12 [Mhctal; @)
wheret, , kT and for any vector! 2 R3, the matrix [! ]is de ned as
2 0 | | 3
| | '3 ‘2
I, b',TC g i Bc.,4 15 0 15
’ s ', O
where! ; are the elements of the vector .
The velocity will evolve in time according to
Z tisr
Vi (K+1) = vr, (k) + Can( )d: (5)
tk
The position will evolve in time according to
tk+1
Fro (K+1)= 1, (k) + Vi, (1)d: (6)

tk

The evolution of by, and bs, will be modeled as random walk processes, i.els, = W,, and by, = wg, with
Elwg,] = E[wa,] = 0, coviwg,] = & Is, and covfws, ] = & I3. The above attitude, position, and velocity
models are discussed in detail in [30].

C. Receiver Observation Model

The pseudorange observation made by th@™ receiver on them™ SOP, after discretization and mild approximations
discussed in [31], is related to the receiver's and SOP's states by

Zr, ;sop,, G)=kre, () I'sop,, ka+ ¢ tr,(j) t sop,, 4) + Vi ;sopp, () (7)

where v, .sop_ is modeled as a DT zero-mean white Gaussian sequence with variancg . . The pseudorange
n S0P, n S0P,

observation made by then™ receiver on thel™ GNSS SV, after compensating for ionospheric and tropospheric dys
is related to the receiver states by

Zrpisu (1) = kre, (1) rsv(Dka+ ¢ [te, () tsvi (D1 Viaisy (1) (8)

where, z,, .5y, , z?n;s\,| Ctiono Cluopo, tiono @Nnd tygpe are the ionospheric and tropospheric delays, respectively,
z? s, Is the uncorrected pseudorangey;, sy, is modeled as a DT zero-mean white Gaussian sequence with variance
2 [=1;:::;L, and L is the total number of GNSS SVs.

Fnisvy?



[1l. COLLABORATIVE SOP-AIDED INERTIAL NAVIGATION

In this section, the collaborative SOP-aided INS framework is desébed in detail.

A. Problem Formulation

ConsiderN navigating AVs, each of which is equipped with an IMU and receivers cpable of producing pseudoranges
to the same L GNSS SVs andM unknown SOPs. The goal of the collaborative SOP-aided INS framewrk is
threefold. First, when GNSS pseudoranges are available, SOP ps#goranges will be used to (1) map all available
SOPs in the AVs' vicinity and (2) supplement a GNSS-aided INS to improve the accuracy of the navigation solution.
Second, when GNSS pseudoranges become unavailable, the psaatdges drawn from the mapped SOPs will be
used exclusively as an aiding source to correct the accumulating esrs of their INSs. Third, the IMU data, GNSS
and SOP pseudoranges, and state estimates of all collaborating A/are shared through an extended Kalman lter
(EKF)-based central fusion center (CFC) to improve the estimation performance compared to a single AV using an
SOP-aided INS as was described in [9].

To exploit SOPs for navigation, their states must be known [32,33]. Kwever, in many practical scenarios, the SOP
transmitter positions are unknown. Furthermore, the SOPs' clod states are dynamic and stochastic; therefore, they
must be continuously estimated. To tackle these problems, a C-SLM-type framework is adapted that operates
in a collaborative mapping mode when GNSS psuedoranges are availabénd in a C-SLAM mode when GNSS
pseudoranges are unavailable. A high-level diagram of this framewhk is illustrated in Fig. 1. In the following
subsections, each mode of the collaborative SOP-aided INS framenk is described.

Zimul
[Actuatofe————
SOP GPS ‘ .
Receivgr "|Receivgr ————— 29 i)
L R -] P(ijj Central
Zry:s0p Zrasv (J - ) l INS
~| EKF Current and
y Updatg Estimatg Sop
N S0P Zr - =
I e | P (ki )T Prediction
Receivgr Receivgr :
[Actuatole———,
AV N ‘

Fig. 1. Centralized collaborative SOP-aided INS that produ ces a state estimate 2 and an estimation error covariance P. All N
collaborating AVs send their IMU data  zjmy , » GNSS pseudoranges zr, ;sv, and SOP pseudoranges zr, ;sop t0 a tightly-coupled EKF-

based CFC which operates in two modes: (1) collaborative map ping mode: 2®  randP P, where ® and Py are the state estimate

and the estimation error covariance, respectively, or (2) C -SLAM mode: 2 20and p P, o0, where 20 and P, o are the state estimate
and the estimation error covariance, respectively.

B. Collaborative Mapping Mode

In this subsection, the collaborative mapping mode is described. Dung this mode, all AV-mounted receivers have
access to GNSS and SOP signals.

B.1 Error State Model

During the collaborative mapping mode, the EKF produces an estimae ®(kjj) , E[x(k)jf z(i)g%zl] of x(k) and an
associated estimation error covariancey (kjj) , E[(kjj)x T (kjj)]. In what follows, it is assumed that k j and j
is the last time-step an INS-aiding source was available, and

h iT
Toenn. T .yT ... T . T.,T T
X ) Xl’l’ 1XrN 1 Xsopln ’XSOPM 1 z ) ZSV! Zsop 1
T ... T L T ... T T,
Zsy » Zrl;sv' ’ZrN sv ’ ZSOP ’ Zrl;sop' ’ZrN sop ’



J T _ 5 e
Zroosv = [Zrgisves ity Zeyisv | Zr,;sop =  Zr,;sop; v Zr;sopy
The EKF error state is de ned as .
It
T . T ... T . T T U I T T .
x, X'Bli X'cIk;rli e X'BN ’ X'cIk;rN IL'sopl' x'clk;sopl’ RN IL'sopM ’ X'clk;sopM ’ (9)
where T
= ~T T T K T T
X‘Bn - n l;-I’n v-l'n Ejgn Ej':'1n !

where 7, 2 R3 is the 3-axis error angle vector. The position, velocity, and clock emors are de ned as the standard
additive error, €.9., Fsop, ,» 'sop, I'sop,- The orientation error is related through the quaternion product

B — .

G qn - G Qn qn '
where the error quaternion g, is the small deviation of the estimate? Qn from the true orientation gqn and is given
by "

B.2 State Propagation

Between aiding updates, the central INS use$zjm, , gr’:':l and the dynamics discussed in Section Il to propagate the
estimate and produce the corresponding prediction error covariace. The SOP state estimate propagation follows
from (1) and is given by
ksopm (k+1jj)= F sop )Qsopm (kjj):

Since the gyroscope and accelerometer biases evolve accordingatsandom walk, their state estimate propagation
equations are given by

By, (k +1jj) = By, (kij) and Ba, (k+1jj) = Ba, (kjj):
In order to propagate the receiver's orientation state estimate,the di erential equation in (4) must be solved. In
this paper, a fourth order Runge-Kutta method is employed and the solution to (4) is given by

T
5.7 0, = Qo+ & (dn, +20n, +20n, + dn,); (10)

where 1 1 1

dn, = > B!'\n(tk) Qo; dn, = > Inl Qo+ éTdnl ;

1 1 1

dng =5 ['n] do* 5Tdn, ; dn, =5 "Pa(ter) (Go+ Tdny);
1
o, [0:0:0:1]; 1o, 5 ®Paltien)+ B Pa(ti)

whereB P (t) = 1 imy, (tk) ﬁgn (kij ). There is no guarantee that the quaternion vector obtained in (10) will be a

By By By

unit vector, and therefore it must be normalized, i.e.,.g ;™ Q ~ 5," 0, g~ 4, _. The orientation state estimate
2

propagation equation becomes

Bkﬂijq — Bxn Bkija .

G n Bk n G n-
The integral in (5) is solved using trapezoidal integration and the vdocity state estimate is propagated according to

. .. T
Vro (k+15) = 9, (kij) + 5 [Sn(k) + Sn(k+ 1))+ €9, (K)T;
h [ h [
where 8,(k) , RT(K) aimu, (tk) Ba, (kjj) andRn(k), R ¢“@_ . Similarly, the integral in (6) is solved using
trapezoidal integration and the position state estimate is propagaed according to
Pro (K+1jj) = e, (Kjj) + 5 [0, (k+ 1j) + 0, (KT
Finally, the receiver's clock state estimate propagation follows from(2) and is given by
Relkir, (K+1jj) = FewReikr, (Kjj):



B.3 Covariance Propagation
During the collaborative mapping mode, the one-step prediction eror covariance is given by
Pu(k+1jj) = FPx(kjj)FT + Q; (11)
F, diag[ B,; Feki:::; By Feks Fsops 205 Fsopl; Q, diag Qry5:::Qry ;s Qsop,s ii1 Qsop,, s

where g, is the nt" AV's DT linearized INS state transition matrix and Q:r, , diag Qgs,; ZQck:r, » Where
Qus, Is the n" AV's DT linearized INS state process noise covariance. The DT linearied INS state transition

matrix g, is given by 2 3
I3 3 033 033 qbgy qba,,
pgn 133 T3 3T pby pba,
B, = van O3 3 I3 3 vbg, vba, Y
O3 3 033 033 I3z 033
03 3 033 033 033 I33
where
h i
T T T
van = &)+ Sk D] C 5 pa =5 vani  abe, = 5 RAK+EDF RA(K) e, = b,
T T T
ngn = Ebén(k) c qbgn ' Vban = qbgn + ngn ' pbgn = E ngn ’ pban = E Vban :

The DT linearized INS state process noise covarianc®g.g , is given by

T
Qus, = 2 EnNcn Bn + N,

where h i
—di 2 : .2 .2 .2 :
N¢, =diag g ls 303 35 2133 §,l33 w,lss:

The detailed derivations of g, and Qg, are described in [29, 34].

B.4 Measurement Update

When an INS-aiding source is available, the EKF update step will corret the INS and clock errors using the standard

EKF update equations [35]. In the collaborative mapping mode, i.e.z , zJ,; stop T, the corresponding Jacobian is

Hovir  OnL sMm - -
H = H ' H i Hsyr , diag[Hsyir,; it Hsvry 15 H sopir d|ag[Hsop;r1;”:;Hsop;rN];
sop;r sop;sop
2 3 2 3
T T T
01 3 irn sy 019 hg 01 3 irn ;s0p; 01 9 hgy
Hsvir, » g fz); H sopiry » 2 fz);
T T T T
01 3 irn iSVL 01 ¢ hcIk 01 3 irn ;S0P 01 ¢ hcIk
L T T. . .
H Sop;sop 1 SOp;rit -1 SOPIrN ; sop;rn s diag SOPyifnt--+3 SOPy ifn 1 )
|
4 Isv . AT " " T . T X
Where irn SV s 7k(\r: rsv: K’ hc|k y [1, 0] y irn S0P, 7'([“:: r\zzz: K’ and S0P, iFn 0 irn ;S0P hClk . ASSUm'ng

uncorrelated pseudorange measurement noise, the measuren@oise covariance is given by

h i

whereR, sy, diag 7 .o fisy @ndRyisop, diag 2. iiiii Fisop, - The update will produce the

posterior estimate X (j jj ) and an associated posterior estimation error covarianc®y (j jj )-



C. C-SLAM Mode

In the C-SLAM mode, TDOA measurements taken in reference to tle rst SOP are used, i.e., the measurement
from the n™ AV-mounted receiver to the mh SOP becomesz’ isop,, » Zrpisop,  Zraisop,- 1he time bias in such
measurement is parameterized only by the clock biases of the SOPsence the receivers' clock biases no longer need
to be estimated. Moreover, the di erence of the SOPs' clock biasgis estimated instead of the individual clock biases.
The EKF implementation of this mode is discussed next.

C.1 Error State Model

In the C-SLAM mode the EKF produces an estimate ®kjj) , E[x%k)jf z%i)g_,] of x(k), and an associated
estimation error covarianceP,o(kjj) , ED<%kjj)x" (kjj )] where

0 h T T T T T T T h T
sriiXgy s Fsopys Msop,t Xclkisop,s -+ 3T sopy, » Xclk;sopy, Xclk;sop,» C teck;sop,s C tek;sop,

wherec tcik:sop, » Clsop, Clsop, aNdC Lek;sop, » Clsop, Clsop,, and the new set of measurementg® are

0_ _ 0T ... or T. or 0 ..... 0 T.
2= TzZsop = Z7,isopiiiiiZryisop 3 Zornsopr  Zraisopysiiii Zraisopy
where T, is the transformation that maps z to z% The EKF error state is de ned as
h it
0 T ..... T . .T g . N T . T .
X7, Xpysi i Xgy s r'soplr F"'sopz- X'clk;sopz v "'sop,\,I ’ X'clk;sopM . (12)

C.2 State and Covariance Propagation

In this mode, the AVS' INS states and SOPSs' position states are popagated using the same equations as in the collab-
orative mapping mode. The new clock states are propagated acading to  Rci;sop,, (K+1jj) = Fok  Reik;sop,, (Kjj)-

The prediction error covariance Pyo(k + 1jj) has the same form as (11), except thatr and Q are replaced with F©
and QU respectively, where

FO diag[ s,;:::; Bu:l3 3:Fsops iii; Fsopl; Q%= TxQTS;

where T is the transformation that maps x to x°.

C.3 Measurement Update

The C-SLAM mode update step is similar to the collaborative mapping male update except the measurement
Jacobian is replaced with

0_ 0.0 . 0 ; 0 ..... o . 0 a ... ar T
H"= H ,Hsop ; Hp, diagHg ;:iiiHg, Hsop, H Sop;,1,...,H sopirn
3 2 3
01 3 irn ,S0p, irn ;S0P 01 9 irn S0Py S0P, iln 0
0 . . . . 0 . . . . .
HBn’ 2 : : . g' HSOP;fn’ . . . . g’
01 3 irn ;S0P irn;sop1 01 9 irn ;S0Py 0 S0Py Mn

and the measurement noise covariance is replaced witR® = T,Rs,,T}. The update will produce the posterior
estimate 29 jj) and an associated posterior estimation error covarianc® yo(j jj ).

IV. Simulation results

In this section, the estimation performance of the collaborative S®-aided INS framework described in Section Il
is analyzed using a simulator which generated (i) the true states oftie navigating AVs, (ii) the SOPs' states, (iii)
noise-corrupted IMU measurements of speci ¢ forceajm,,, and angular rates! i, , for each vehicle, and (iv) noise-
corrupted pseudoranges from each vehicle to multiple SOPs and GPSVs. Details of this simulator are provided
next.



A. Simulator

The states of N AVs were simulated. Each AV-mounted receiver was set to be equipgd with a typical temperature-
compensated crystal oscillator (TCXO), with fho,,;h 2, g=f94 10 2°;3:8 10 ?'g, wheren =1;::;N. Each
simulated trajectory corresponded to an unmanned aerial vehicl{UAV), which included two straight segments, a
climb, and a repeating orbit, performed over a 200 second period. Ae trajectories were generated using a standard
six degree-of-freedom (6DoF) kinematic model for airplanes [29]. Xeluding trajectories generated in a closed-loop
fashion so to optimize the vehicles' and SOPs' estimates [36], this typ of open-loop trajectory has been demonstrated
to produce better estimates than an open-loop random trajectoy [37, 38].

The IMU signal generator models a triad gyroscope and a triad acderometer. The datay; (t) for the it" axis of the
gyroscope and accelerometer were generated &t= 100 Hz according to

yi) =1+ &) [ui®+ b))+ ma, + o+ rRrRW, * Rr I

where u; (t) is either the vehicle's actual acceleration or angular rotation ratefor axis i, , is the scale factor,h (t)
is a random bias which is driven by the bias instability, ma , is the misalignment, o, is quantization noise, rrw ;
is rate random walk, and grg, is rate ramp [39]. The magnitude of these errors and their driving stéistics are
determined by the grade of the IMU. Data for a consumer-grade MU was generated for this work.

GPS L1 C/A pseudoranges were generated at 1 Hz according to (8)sing SV orbits produced from Receiver In-
dependent Exchange (RINEX) les downloaded on October 22, 208 from a Continuously Operating Reference
Station (CORS) server [40]. They were set to be available fot 2 [0;50) seconds, and unavailable fot 2 [50; 200]
seconds. Pseudoranges were generated to six SOPs at 5 Hz acliog to (7) and the SOP dynamics discussed in
Subsection II-A. Each SOP was set to be equipped with a typical ove-controlled crystal oscillator (OCXO), with

fhosop, 1 h 2:s0p, 9= f8 10 %°;4 10 ?3g, wherem = 1;::;;6. The SOP emitter positions rsop f;:l were sur-

veyed from cellular tower locations in downtown Los Angeles, Califoria. The simulated trajectories, SOP positions,
and the vehicles' positions at the time GPS was set to become unavaitde are illustrated in Fig. 2.

‘ Vehicles' trajectoriee=—= ‘ SOPs' positions& ‘ GPS cuto Iocation)(‘
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&

X
X

Fig. 2. True UAVS' traversed trajectories (yellow), SOP loc ations (blue pins), and the vehicles' positions at the time G PS was cut o
(red).

B. Results

To demonstrate the performance of the collaborative SOP aidedNS framework, the environment described in
Subsection IV-A was simulated. Two scenarios were considered: (§n environment consisting of four AVs (N = 4)
and (i) an environment consisting of a single AV (N = 1). Each vehicle was assumed to be equipped with a
consumer-grade IMU and have access to pseudoranges drawmifin the same six SOPs ¥ = 6). The initial errors
of the navigating AVs' states were initialized according to x;,(0j0) N 017 1; Py, (0jO) , where Py, (0jO)
diag (10 ?) 13 3;9 I3 3;13 3;(10 ©) lg 6;9;1 for n = 1;:::;4. The SOP state estimates were initialized



h i T
according toRsop, (0j0) N Xsop, (0); Psop(0jO) , form =1;:::;6, wherexsqp, (0) rSTOprn ; 104,10 |, Psop(0j0)
(10%) diag[1; 1; 1; 0:1; 0:01].

The resulting estimation error trajectories and corresponding 3 bounds for the position, velocity, and attitude of
one of the AVs and the position of one of the SOPs are plotted in Figs3 (a)-(). For a comparative analysis, the 3
bounds produced by a traditional GPS-aided INS are also plotted. The plots in Figs. 4 (a) and (b) correspond to
the estimation errors of the receiver's clock states with GPS availale and the plots in Figs. 4 (c) and (d) correspond
to the estimation errors of the SOP's clock states while GPS was availale. Figs. 4 (e) and (f) correspond to the
estimation errors of the relative SOP clock biases and drifts that wee initialized when GPS became unavailable, as
was described in Subsection IlI-C.1.

[ N=1: Error 3 | N=4 Emor— 3 ... | GPs-aided ING: ... | GPScuto - |
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Fig. 3. The results of two scenarios are illustrated. In both  scenarios, each navigating UAV had access to GPS pseudorang es for only
the rst 50 seconds while traversing the trajectories illus trated in Fig. 2. In the rst scenario, four AVs (N = 4) using a centralized
collaborative SOP-aided INS produced the estimation error  trajectories and corresponding 3  bounds (black). In the second scenario, one
AV (N = 1) with an SOP-aided INS produced the estimation error traj  ectories and corresponding 3 bounds (orange). For a comparative
analysis, the 3 bounds for a traditional GPS-aided INS are shown (green). No rth, East, and down (NED) errors are shown for position
and velocity. Roll, pitch, and yaw (rpy) errors are shown for  the orientation.

The following may be concluded from these plots. First, without aiding the estimation error uncertainties diverge (as
expected), but with SOP aiding, the error uncertainties are bounced (in the absence of GPS). Second, the produced
estimation uncertainties of the position states for both the AV and the SOP whenN = 4 are signi cantly less than
the ones produced wherN = 1. Moreover, the estimator's transient phase for both the AV and the SOP whenN =4

is shorter than the transient phase whenN = 1, especially for the SOP's position states.
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Fig. 4. Estimation error trajectories and 3 bounds for four AVs ( N = 4) using a centralized collaborative SOP-aided INS (black ) and
a single AV (N = 1) using an SOP-aided INS (orange). (a) and (b) correspond t o the receiver's clock states while GPS was available
and (c) and (d) correspond to the SOP's clock states while GPS was available. (e) and (f) correspond to Xl ;sop, during the C-SLAM

mode.

B.1 Performance Analysis: Quantity of Collaborating AVs

To study the performance of the collaborative SOP-aided INS franework over a varying number of collaborating
AVs, six separate simulation runs were conducted: four runs wher the collaborative SOP-aided INS framework was
employed (N = 1;:::;4) and two runs where a traditional GPS-aided INS is used N = 1). One of the GPS-aided
INS runs uses only an INS after the GPS cut o time, while the other assumes GPS to be available during the entire
run. Fig. 5 illustrates the resulting log f det [P, ]g for each run, which is related to the volume of the uncertainty

ellipsoid [38].

GPS cut o _INSonly,N =1

S WN -

>
zzz 2z

GPS-aided INSN =1

logf det[Pr,]g

Time [s]

Fig. 5. Multiple UAVs traverse the trajectories illustrate  d in Fig. 2. GPS pseudoranges become unavailable at 50s (red d otted line) and
the N vehicles continue to navigate using C-SLAM as described in S ubsection III-C. The logarithm of the determinant of the est  imation
error covariance for the position of one of the AVs is plotted for a varying number of total collaborators N. Moreover, the logarithm of
the determinant of the estimation error covariance for the p  osition of one of the AVs navigating using (i) a traditional G =~ PS-aided INS
with continuous GPS access (green) and (ii) an INS only (gree n dashed) is plotted for comparison.

The following may be concluded from Fig. 5 about the collaborative SOPaided INS framework. First, a bound
may be speci ed on the estimation uncertainties for any number of ollaborating AVs in the environment. Second,
the estimation performance is always improved as more collaborating\Vs are added to the environment. However,
this performance improvement, which is captured by the distance ltween the logf det [P, ]g curves, becomes less
signi cant as the number of collaborating AVs increases. The maximun improvement is obtained when going from
one AV to two collaborating AVs. Third, when GPS becomes unavailable the collaborative SOP-aided INS will
perform signi cantly better than an INS only for any number of colla borating AVs in the environment. Fourth,
two or more collaborating AVs equipped with SOP-aided INSs which arein the absence of GPS signals can achieve



estimation performance comparable to one AV equipped with a traditonal GPS-aided INS with access to GPS signals
from eleven GPS SVs.

V. EXPERIMENTAL RESULTS

A eld experiment was conducted using two IMU-equipped UAVs and ftware-de ned receivers (SDRs) to demon-
strate the collaborative SOP-aided INS framework discussed in Séon Ill. To this end, two antennas were mounted
on each UAV to acquire and track GPS signals and multiple cellular baseransceiver stations (BTSs) whose signals
were modulated through code division multiple access (CDMA). The GF5 and cellular signals were simultaneously
downmixed and synchronously sampled via two-channel Ettu§ universal software radio peripherals (USRPs). These
front-ends fed their data to the Multichannel Adaptive TRansceiver Information eXtractor (MATRIX) SDR, which
produced pseudorange observables from all GPS L1 C/A signals in we and two cellular BTSs [6]. The IMU data
was sampled from the UAV's on-board proprietary navigation systen, which was developed by Autel Robotics .
Fig. 6 depicts the experimental hardware setup and Fig. 7 (a) illustates the experimental environment.

Experimental results are presented for two estimators: (i) the ollaborative SOP-aided INS described in this paper
and (ii) for comparative analysis, a traditional GPS-aided INS using the UAV's IMU. The UAVs traversed the white
trajectories plotted in Figs. 7 (c) and (d), which consist of GPS unavailability runs of 15 seconds. The North-East
root mean squared errors (RMSES) of the GPS-aided INSs' navigeon solutions after GPS became unavailable were
9.9 and 14.55 meters, respectively. The UAVs also collaboratively eshated their trajectories using C-SLAM using
the two cellular BTSs illustrated in Figs. 7 (b) and (e) to aid their on-bo ard INSs. The North-East RMSEs of the
UAVs' trajectories were 4.03 and 4.34 meters, respectively, andhie nal localization error of the cellular BTSs were
25.9 and 11.5 meters, respectively. The North-East 99-percentile initial and nal uncertainty ellipses of the BTSs
position states are illustrated in Fig. 7 (a). The UAVs' RMSEs and nal errors are tabulated in Table I. It is worth
noting that only two cellular BTSs were exploited in this experiment. The RMSE reduction from the collaborative
SOP-aided INS will be even more signi cant when more SOPs are includk

CDMA PseudorangEs

signals l |

Universal softwgre Lﬁ%’g,‘ﬁ‘("ggﬁd
radio peripherdl MATLAB-based|

Cellular and GPS antennag ~ (USRP) IMU data SOP-aided INS

Fig. 6. Experiment hardware setup.

TABLE |
Experimental Estimation Errors
Framework || Unaided INS || SOP-aided INS (C-SLAM)
Vehicle UAV 1 | VAV 2 UAV 1 UAV 2
RMSE (m) 9.9 145 4.0 4:3
Final Error (m) 278 245 6:3 4:3

VI. CONCLUSION

This paper presented and studied a collaborative SOP-aided INS frmework. Details of the framework were pre-
sented for implementation. Its performance was studied over a v&ing number of collaborating AVs and was shown
to produce position estimation uncertainties comparable to a tradifonal GPS-aided INS when two or more AVs
collaborated. Moreover, experimental results demonstrated @ UAVS navigating with the collaborative SOP-aided

INS framework using two cellular BTSs in the absence of GPS, which yided UAV trajectory RMSE reductions of

59.3% and 70.2%, respectively, when compared to unaided INSs.



@)

e

(b) © Trajectories  (d) K ©

H

e 1

-, Z u

&?8 2 H biig
| ] h;
C-SLAM with
SOP referencing
INS only
True tower location Estimated tower location GPS cut o location True tower location Estimated tower location

Fig. 7. Experimental results.
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